A Tale of Time Release powered by Blockchain
and IBE

Gennaro Avitabile! Nico Déttling®® Lucjan Hanzlik?
Bernardo Magri®* Christos Sakkas® Stella Wohnig?®

LIMDEA Software Institute
2Helmholtz Center for Information Security (CISPA)
3The University of Manchester

4Primev 5Saarland University

*Funded by an ERC grant

03.05.2025, Madrid

Motivation: Front-Running

=

sogs

Committee

User
= 8

Motivation: Front-Running

is based on re-ordering dependent on content of txs.

ﬂ

g O
Committee

% Buy 1000 XY,$

Buy 1000 XY,$$

Bots

Mempool

N

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content...

fm O

Committee

q’

Motivation: Front-Running

is based on re-ordering dependent on content of txs

So if we hide the content... JUST long enough
HEE

fm O

Committee

w

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

£m 0

Committee

two ways:

q

Mempool

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

ﬂ
09 D

Committee

Open lock

and execute

in order

e User
Mempool

or client reveal

two ways:

Commit & Open

Offline users?
Or

=g K

{2

Time Lock Puzzles

Forced Opening
possible!

Assumptions to build Time-Lock Puzzles

Assumptions to build Time-Lock Puzzles

Assumptions to build Time-Lock Puzzles

Just use the blockchain as TTP.

PoS blockchain as TTP?

AK

AK
Block 1

inspects txs

Committee

tchosen

'~

Observations
» Trust infrastructure

» Periodic signing, Reference clock!

» — Reuse trust, committee work

signs block

PoS blockchain as TTP?

Block 1

inspects txs

Committee
read-only
X =2
. Goal: Off-Chain Tool
Observations
) » Public Enc- & D ti
» Trust infrastructure ublic Enc- & Decryption
e . » Minimi itt
» Periodic signing, Reference clock! 1nimize committee
overhead!

» — Reuse trust, committee work .
» Concrete efficiency

[m] = =

McFly - Verifiable Encryption to the Future Made Practical

Joint work of Nico Déttling!*, Lucjan Hanzlik!, Bernardo Magri®
and Stella Wohnig'?3
Published at Financial Crypto 2023
1 Helmholtz Center for Information Security (CISPA)
2 The University of Manchester
3 Saarland University
* Funded by an ERC grant

Vision

Time = block height. Users have read-only access to a blockchain
ct=Enc(m,T) m=Dec(ct,T)

= (2
Block 2

Block T

IND-CPA security

Correct public
decryption

DA

Previous work [LJKW18] How to build timelock encryption

Time = block height. Users have read-only access to a blockchain.
ct=Enc(m,T)

m=Dec(ct,T)

:
Block 2

Block T

IND-CPA security

P

Correct public
decryption
oW + Extractable WE

Previous work [LJKW18] How to build timelock encryption

Time = block height. Users have read-only access to a blockchain.
ct=Enc(m,T)

m=Dec(ct,T)

Block 2 wm

Block 3

Block T

IND-CPA security

P

Correct public
decryption
oW + Extractable WE

Previous work [LJKW18] How to build timelock encryption

Time = block height. Users have read-only access to a blockchain.
ct=Enc(m,T)

m=Dec(ct,T)

Block 2 wm

Block 3

Block T

IND-CPA security

Correct public
decryption
PoW + Extractable WE
Inefficient!

Our idea

Time = block height. Users have read-only access to a blockchain
ct=Enc(m,T) m=Dec(ct,T)

= (2
Block 2

IND-CPA security

Correct public
decryption

DA

Our idea

>

Time = block height. Users have read-only access to a blockchain
ct=Enc(m,T)

m=Dec(ct,T)

2

Availability of sig
A% on Block T

IND-CPA security

Correct public
decryption

Signature Witness Encryption

ct=Enc(m,T) m=Dec(ct,T)

D4 -2

‘ ' Availability of sig
A% on Block T

Correct public

IND-CPA security decryption

Signature Witness Encryption

ct=Enc(m,T)

>

m=Dec(ct,T)

2
/!

Availability of sig
A% on Block T

IND-CPA security

Correct public
decryption

+NIZK Proof system over
properties of m

t-of-n Signature Witness Encryption (basically)

@ Encrypt message m
» under potential signer set V = (vky,...,vk,)
ct = Enc(m, V, T) » and reference message T

s.t. Decryption is possible iff we get indices /
>@< signatures o;,i € |
» s.t. Viel:SigVerify(o;, T,vk;) =1
m = Dec(ct, V, U, 0) » and |/| >t (i.e. >t parties signon T)

t-of-n Signature Witness Encryption (basically)

@ Encrypt message m
» under potential signer set V = (vky,...,vk,)
ct = Enc(m, V, T) » and reference message T

s.t. Decryption is possible iff we get indices /
>@< signatures o;,i € |
» s.t. Viel:SigVerify(o;, T,vk;) =1
m = Dec(ct, V, U, 0) » and |/| >t (i.e. >t parties signon T)

Security: IND-CPA
» For < t — 1 dishonest keys
» and signing oracle for honest keys (Except for T*)

» A chooses mg, my, gets Enc(myp, V, T*), guesses b

McFly - building on SWE

Block 2 |

Block 3

Block T

Q Availability of sig
g Availability of sig

IND-CPA security

Correct public

decryption
& -+NIZK Proof system over
properties of m

McFly - building on SWE

Block 2 |

Block 3

Block T +

IND-CPA security
Q Availability of sig

Q Availability of sig

Correct public
&

decryption
-+NIZK Proof system over
Blockchain assumptions

properties of m

» Block production rate
» Honest majority

= No premature signing

McFly - building on SWE

Block 2 |

Block 3

Block T
Q Availability of sig

Blockchain assumptions

» Block production rate
» Honest majority

= No premature signing

+ E'

Q Availability of sig
IND-CPA security Gairre p.ublic
decryption
& -+NIZK Proof system over

properties of m

Signature Witness
Encryption

» Choose signer set V as
committee keys

McFly - building on SWE

E Q Availability of sig

IND-CPA security C‘;:::;p‘;‘::]l'c

Block 2 | Block 3 Y Block T +

& -+NIZK Proof system over

Q Avilability of sig g properties of m

Blockchain assumptions]]
Signature Witness

» Block production rate Encryption
» Honest majority

. » Choose signer set V as
= No premature signing

committee keys
» Known committee at decryption

time = near-future

McFly - building on SWE

E Q Availability of sig

IND-CPA security C‘;:::;p‘;‘:}:]l'c

Block 2 | Block 3 Y Block T +

& -+NIZK Proof system over

Q Avilability of sig g properties of m

Blockchain assumptions]]
Signature Witness

» Block production rate Encryption

» Honest majority

. » Choose signer set V as
= No premature signing

committee keys
» Known committee at decryption

. » Choose reference T as
time = near-future

predictable block header of
block T.

u]
@

I

[
i
N
yel
Q

McFly - building on SWE

Block 2

Block 3 % Block T +

Q Availability of sig

Blockchain assumptions

>

>

Block production rate

Honest majority
= No premature signing

Known committee at decryption
time = near-future

Custom block structure:
Sign header seperately!

Wyl
Q Availability of

sig

IND-CPA security Correct public

decryption

& -+NIZK Proof system over

properties of m

Signature Witness
Encryption

» Choose signer set V as
committee keys

» Choose reference T as
predictable block header
block T.

SWE plausibility

SWE plausibility

Claim: IBE = SWE

SWE plausibility

Claim: IBE = SWE

» via the Naor transform we know: IBE = Signatures

SWE plausibility

Claim: IBE = SWE
» via the Naor transform we know: IBE = Signatures
» this extends to: IBE = Signatures + SWE

SWE plausibility

Given IBE
» pk, msk < Gen(1%)
» skp < Ext(msk, ID)
» ct < Enc(m, pk, ID)
» m < Dec(skp, ct, pk)

SWE plausibility

Given IBE
» pk, msk < Gen(1%)
» skp < Ext(msk, ID)
» ct < Enc(m, pk, ID)
» m < Dec(skp, ct, pk)

Construct Signature

» Gen: Output IBE.Gen

» Sign(M, msk): op = skpy

» To verify Enc random message to
ID M and see if decryption works

SWE plausibility

Given IBE Construct Signature
> pk, msk < Gen(1*) » Gen: Output IBE.Gen
» skjp « Ext(msk, ID) » Sign(M,msk): op = sky
» ct + Enc(m, pk, ID) » To verify Enc random message to
» m « Dec(skp, ct, pk) ID M and see if decryption works

Being able to decrypt is the same as being able to sign!

SWE plausibility

Given IBE Construct Signature + 1-of-1 SWE
> pk, msk < Gen(1*) » Gen: Output IBE.Gen
» skp < Ext(msk, ID) » Sign(M,msk): op = sky
» ct «+ Enc(m, pk, ID) » To verify Enc random message to
» m < Dec(skp, ct, pk) ID M and see if decryption works

Being able to decrypt is the same as being able to sign!
» SWE.Enc(m, V = {pk}, T):
IBE.Enc(m, pk,ID = T)
» Decryption with o = skt possible,

if T is not signed, IND-CPA
security from IBE

SWE plausibility

Given IBE Construct Signature + 1-of-1 SWE
> pk, msk < Gen(1*) » Gen: Output IBE.Gen
» skp < Ext(msk, ID) » Sign(M,msk): op = sky
» ct «+ Enc(m, pk, ID) » To verify Enc random message to
» m < Dec(skp, ct, pk) ID M and see if decryption works

Being able to decrypt is the same as being able to sign!
» SWE.Enc(m, V = {pk}, T):
IBE.Enc(m, pk,ID = T)
» Decryption with o = skt possible,

if T is not signed, IND-CPA
security from IBE

For t-of-n add secret sharing

Thresholdize

» Assume we know a 1-of-1 SWE

» Thresholdizing it with multiplicative O(n) overhead

t-of-n

Enc signatures Dec

e+ [0 - (EECRE Q- - B,
share - reconstruct
d AN
S E-
" g

~

Y

—>

g H
Q- - B

Design Choices/Properties of our SWE

» Build for BLS signatures

» Deployed e.g. in Ethereum
» Efficient multi-signature

9‘014'"03:0

L3

» Results from the Boneh-Franklin IBE via the Naor transform
= 1-of-1 SWE for free

BLS - Quick Recap

Let e : G1 x Go — G7 be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1, G2, G7), and H a hash function.
BLS Signature
Key pairs: (sk € Zp, vk = g5¥)
Sig(sk, m) = H(m)*
Verify(vk, m, o): Output
e(0, &) = e(H(m), vk)

BLS - Quick Recap

Let e : G1 x Go — G7 be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1, G2, G7), and H a hash function.

BLS Signature
Key pairs: (sk € Zp, vk = g5¥)
Sig(sk, m) = H(m)
Verify(vk, m, o): Output
e(0,82) = e(H(m), vk)

SWE (based on Boneh Franklin)

Encrypt m to vk with reference T:
c=gs,c" = (e(H(T),vk))" - gT

Notice (e(H(T),vk))" = e(o,c)

BLS - Quick Recap

Let e : G1 x Go — G7 be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1, G2, G7), and H a hash function.

BLS Signature
Key pairs: (sk € Zp, vk = g5¥)
Sig(sk, m) = H(m)™

Multi Signature
Agg(oy,...,0p) = Hie[ﬁ] gi

Verify(vk, m, o): Output AggVerify for m and
e(0,82) = e(H(m), vk) vki, ..., vk
?
SWE (based on Boneh Franklin) e(o,8) =
Encrypt m to vk with reference T: [Tic(s e(H(m), vk;)

¢ =g, ¢ = (e(H(T),vk))" - g7
Notice (e(H(T),vk))" = e(o, ¢)

Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,
s.t. for any > t shares we get m =3 s;L;, for L; Lagrange
coefficients

No information from < t shares
t-of-n
signatures Dec

Enc
- . - p 01 . N
share - . reconstruct
. T . - - o O3 e . 7 .
~

o
>

Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,

s.t. for any > t shares we get m =3 s;L;, for L; Lagrange
coefficients

No information from < t shares

t-of-n
Enc multi-sig Dec”
—
e 5L IBEGRT)
A
/ O-
m ~
EE
s [BEGT)
>

What about multi-signatures?
Have: ¢/= g% - e(0j, "), aggregated o) = MNj¢cj0;

Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,

s.t. for any > t shares we get m =3 s;L;, for L; Lagrange
coefficients

No information from < t shares

Enc rrflj(ljtf;fr]sig Dec”
share ~ . 7 -
- . = - [IBE(s, vk, T) ch
— > —> -
What about multi-signatures?

Have: ¢j= g% - e(0j, &"), aggregated o) = M;¢0;
Want: g™ = M, g%" = ”ie/(C,{Li/e(Ui7g2r)Li)

Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,

s.t. for any > t shares we get m =}, s;L;, for L; Lagrange
coefficients

No information from < t shares

t-of-n
Enc multi-sig Dec”
share ~ . 7 -
s e
o (e
What about multi-signatures?
Have: ¢/= g% - e(0j, "), aggregated o) = MNj¢cj0;

Want: g™ = Migig%t = Nigi(c}" /e(oi, g2)")
Modified Aggregation: o; = I'I;E,a,.L"

Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,

s.t. for any > t shares we get m =}, s;L;, for L; Lagrange
coefficients

No information from < t shares

t-of-n
Enc multi-sig Dec”
—
e 5L IBEGRT)
" m E
[m] ~
EE

What about multi-signatures?

Have: ¢/= g% - e(0j, "), aggregated o) = MNj¢cj0;

Want: g™ = Mie;g%" = Migy(c/" /e(0i, 82)")

Modified Aggregation: o, = I'I;E,a,.L" OR workaround as a service

Is that the time?!?!

Design Choices/Properties of our SWE

» Build for BLS signatures
» Supports Multi-Signatures (at a price)

Design Choices/Properties of our SWE

» Build for BLS signatures

» Supports Multi-Signatures (at a price)
» Our SWE is a homomorphic commitment
» supports commit & open, optimistic settings

Design Choices/Properties of our SWE

» Build for BLS signatures

» Supports Multi-Signatures (at a price)
» Our SWE is a homomorphic commitment
» supports commit & open, optimistic settings
» Our SWE is verifiable
» integration with bulletproofs for efficiently proving properties
of the contained message
» this is done by adding a Pederson commitment and a proof of
plaintext equality

Design Choices/Properties of our SWE

» Build for BLS signatures
» Supports Multi-Signatures (at a price)
» Our SWE is a homomorphic commitment
» supports commit & open, optimistic settings

» Our SWE is verifiable

» integration with bulletproofs for efficiently proving properties
of the contained message

» this is done by adding a Pederson commitment and a proof of
plaintext equality

» Optimizes for concrete efficiency

Efficiency?

Let's encrypt k messages, with n committee members:

Efficiency?

Let's encrypt k messages, with n committee members
Enc Dec

W cEd e - & e
W Gd Gl - Bl e

Gl Gl - B e

Efficiency?

Let's encrypt k messages, with n committee members: Size O(n-

Enc Dec

. . . o . gnz

Gl Gl - B e

Efficiency?

Enc

o] ladBd -

Let's encrypt k messages, with n committee members: Size O(n- k)
Dec
al ¢ - EmEn
g Enc(m,g°,T)
my| | Enc(ms,g®,T)

» Batching: Size O(n + k)

Efficiency?

Enc

o] ladBd -

Let's encrypt k messages, with n committee members: Size O(n- k)
Dec
E ¢ - EmEn
g Enc(m,g°,T)
my| | Enc(ms,g®,T)

» Batching: Size O(n + k)

» Packing: Allow m € {0,...,2° — 1} instead of bit messages
(baby-step-giant-step)

Efficiency?

Let's encrypt k messages, with n committee members: Size O(n- k)
Enc

Dec
ol law @i - len € [my] [Enc(mygl.T)
g Enc(m,g°,T)

» Batching: Size O(n + k)

» Packing: Allow m € {0,...,2° — 1} instead of bit messages
(baby-step-giant-step)

» Bilinear setup: e : Gy X Go — Gt. Group operations in Gt
usually most expensive. We move most operations into Gy!

Now what?

We built concretely efficient verifiable time release encryption
» from BDH and blockchain trust-assumptions

» with small overhead for committee
(2 signatures per block + changed aggregation)
» for a limited time horizon. — Future work!

Now what?

We built concretely efficient verifiable time release encryption
» from BDH and blockchain trust-assumptions

» with small overhead for committee
(2 signatures per block + changed aggregation)

» for a limited time horizon. — Future work!

» [FMMMTV'22]: Cryptographic Oracle-based Conditional
Payments

» Similar primitive (VweTS)
» Cool application: Construct blockchain payments conditioned
on real-life events
Applications of SWE potentially see growing signer sets!

» Asymptotics of O(n) in number of potential signers not ideal
— Future work!

tlock by [Gailly, Melissaris, Romailler]

tlock by [Gailly, Melissaris, Romailler]

» Similar IBE based construction for BLS

» Found perfect deployment environment: drand
relatively fixed committee regularly signs predictable messages

tlock by [Gailly, Melissaris, Romailler]

» Similar IBE based construction for BLS

» Found perfect deployment environment: drand
relatively fixed committee regularly signs predictable messages

» At Setup, a distributed key generation was run to get a
long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

tlock by [Gailly, Melissaris, Romailler]

» Similar IBE based construction for BLS

» Found perfect deployment environment: drand
relatively fixed committee regularly signs predictable messages

» At Setup, a distributed key generation was run to get a
long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

» In this setting: 1-of-1 SWE = BF IBE is enough!
» NO committe overhead, long-term encryption, O(1) ciphertext
» Runs in production, with a cute GUI webapp

ofty0

tlock by [Gailly, Melissaris, Romailler]

>
>

>

Similar IBE based construction for BLS

Found perfect deployment environment: drand
relatively fixed committee regularly signs predictable messages

At Setup, a distributed key generation was run to get a
long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

In this setting: 1-of-1 SWE = BF IBE is enough!
NO committe overhead, long-term encryption, O(1) ciphertext

Runs in production, with a cute GUI webapp

5
o

Highly permissioned system

Now what?

Maybe this is enough for your application and you can tune out
now :)

Now what?

now :)

Maybe this is enough for your application and you can tune out

Now what?

Maybe this is enough for your application and you can tune out
now :)

But a theorist might want
» Long-Term Encryption across Committees

> Better asymptotics without joint key setup

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution 4+ bootstrapping to far-future by
auxiliary committees

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution 4+ bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a
secret?

= sharem open

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution 4+ bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a

secret?
= shareﬁ reshare @@ reshare ﬁ open (o)
appoint appoint appoint
2 22

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution 4+ bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a

secret?
share reshare reshare (@) open
= m o @®89 op
appoint appoint o appoint
528 22

To my knowledge no "off-chain" solution known to extend a time
release among multiple committees

= YOUR future work?

Signature-based Witness Encryption with Compact
Ciphertext

Joint work of Gennaro Avitabile!, Nico Déttling®*, Bernardo
Magri3, Christos Sakkas3, Stella Wohnig®*
Published at Asiacrypt 2024
1 IMDEA Software Institute
2 CISPA Helmholtz Center for Information Security
3 The University of Manchester
4 Saarland University
* Funded by an ERC grant

High-level Overview so far

» Assume we know a 1-of-1 SWE (BF-IBE in BLS case)
» Thresholdizing it with multiplicative O(n) overhead

t-of-n
Enc signatures Dec
B - EEE Qe - [E
secre reconstruct
share
v » Y
@ Qe B E
e 3
s [swets,vn |
—
m] [actdm]
m] — [actdmn |
mo]

III'

Batching via Symmetric Encryption

» How CAN we do better?

/O to the rescue

The superpower:
replace circuits

puncture a key to forget a value
If functionally equivalent

.Mﬁ.-_

Together they help forgetting a value in a circuit!

i0 i0 PPRF

DA

High-level idea

t-of-n

signatures Dec
Q. - [E
secret reconstruct
sh
O3 —> —>-
'\ .

- - ek

Q>

High-level idea

t-of-n

signatures Dec
o [&]
secret thd reconstruct
sh
o —H— K
"

Let a circuit create the shares

DA

High-level idea

t-of-n
Dec
secret

snbatures
sh

/'/' . reconstruct
«——Vkl

AN

E XK
'\
vk,

m] [eEmi] [m=Dec(eK)]
Let a circuit create the shares

Circuit gets (i, vk;, 0;), if valid returns share s; (pulled from PPRF)
This is O(polylog n).

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created

Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried

successfully to output honest share.

Enc Key PPRF Key

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

- Hardwired share
(e] o | | [e
>

Enc Key PPRF Key Enc Key PPRF Key

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Replace by PRG randomness

- Hardwired share
(el) o] | | [I =
>

Enc Key PPRF Key Enc Key PPRF Key

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Replace by PRG randomness

- Hardwired share
e o] | | [e X
>

Enc Key PPRF Key Enc Key PPRF Key
|~ I3
EEEE EEEE
Adv doesn‘t get o1
A verifying o1

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Replace by PRG randomness

- Hardwired share
e o] | | [e X
>

Enc Key PPRF Key Enc Key PPRF Key
|~ I3
EEEE EEEE
Adv doesn‘t get o1
A verifying o1

Puncturable
Signatures

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness

- Hardwired share
(el) o] | | [I e X
>

Enc Key PPRF Key Enc Key PPRF Key
|~ I3
EEEE EEEE
Adv doesn‘t get o1
A verifying o1

Puncturable
Signatures

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness

- Hardwired share
(o] (]] | | D e]) - |]] o])
> >
until

<t shares
Enc Key PPRF Key Enc Key PPRF Key Enc Key PPRF Key

|~ I~ |
Adv doesn‘t get o1
A verifying o1

Puncturable
Signatures

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness

Hardwired share

(o] [o] | | (e e] KD | 5]] X
> >
until

<t shares
Enc Key PPRF Key Enc Key PPRF Key Enc Key PPRF Key

Circnit. growth

to puncture O(n-t)
shares at once

Adv doesn‘t get o1
A verifying o1

Puncturable
Signatures

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness
Hardwired share

| ol [e]]] e]
> >
until

<t shares
Enc Key PPRF Key Enc Key PPRF Key Enc Key PPRF Key

EEEE XEEE 7 XEXE

X Circnit. growth
Adv doesn't get o1 to puncture O(n-t)

2 verifying o1 shares at once

Puncturable Storage in kevs
Signatures g 4

u]
@
I

ut
i

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness

Hardwired share Read all shares output from input
|] o o]) |]] 26D K
> >
until
<t shares
Enc Key PPRF Key Enc Key PPRF Key Enc Key PPRF Key

EEEE XEEE 7 XEXE

X Circnit. growth
Adv doesn't get o1 to puncture O(n-t)

2 verifying o1 shares at once

Puncturable Storage in kevs
Signatures g 4

u]
@
I

ut
i

Comparison

P

Compiler
[DHMW*22]
Proof of Stake

Blockchain

\ Time Release Encryption /

Concrete efficiency? Asymptotic efficiency?
* BLS based construction * Generic construction
* Size O(n) * Size O(polylog n)

* Based on BDH, ROM e Uses iO

SWE, [DHMW*22| c¢SWE, [ADMSW*24]

Future work

> Are there less heavy compact constructions?

» Find a bootstrapping to the far-future for McFly with no
committee communication/joint key setup?

» Any chance if reference messages are not (fully) known?

	Introduction

