A Tale of Time Release powered by Blockchain and IBE

Gennaro Avitabile¹ Nico Döttling^{2,*} Lucjan Hanzlik² Bernardo Magri^{3,4} Christos Sakkas³ **Stella Wohnig**^{2,5}

¹IMDEA Software Institute

²Helmholtz Center for Information Security (CISPA)

³The University of Manchester

⁴Primev ⁵Saarland University

*Funded by an ERC grant

03.05.2025, Madrid

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

is based on re-ordering dependent on content of txs.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

is based on re-ordering dependent on content of txs. So if we hide the content...

is based on re-ordering dependent on content of txs. So if we hide the content... JUST long enough

is based on re-ordering dependent on content of txs. So if we hide the content... JUST long enough

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

is based on re-ordering dependent on content of txs. So if we hide the content... JUST long enough

two ways: Commit & Open Offline users?

Time Lock Puzzles Forced Opening possible!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assumptions to build Time-Lock Puzzles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Assumptions to build Time-Lock Puzzles

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Assumptions to build Time-Lock Puzzles

Just use the blockchain as TTP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PoS blockchain as TTP?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Observations

- Trust infrastructure
- Periodic signing, Reference clock!
- \blacktriangleright \Rightarrow Reuse trust, committee work

PoS blockchain as TTP?

Observations

- Trust infrastructure
- Periodic signing, Reference clock!
- \blacktriangleright \Rightarrow Reuse trust, committee work

Goal: Off-Chain Tool

Public Enc- & Decryption

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Minimize committee overhead!
- Concrete efficiency

McFly - Verifiable Encryption to the Future Made Practical

Joint work of Nico Döttling^{1,*}, Lucjan Hanzlik¹, Bernardo Magri² and Stella Wohnig^{1,3} Published at Financial Crypto 2023 ¹ Helmholtz Center for Information Security (CISPA) ² The University of Manchester ³ Saarland University * Funded by an ERC grant

Vision

Previous work [LJKW18] How to build timelock encryption

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous work [LJKW18] How to build timelock encryption

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Previous work [LJKW18] How to build timelock encryption

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Our idea

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Our idea

Time = block height. Users have read-only access to a blockchain.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Signature Witness Encryption

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Signature Witness Encryption

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

t-of-n Signature Witness Encryption (basically)

ct = Enc(m, V, T)

 $m = Dec(ct, V, U, \sigma)$

Encrypt message m

- under potential signer set $V = (vk_1, \dots, vk_n)$
- ► and reference message *T*

s.t. Decryption is possible iff we get indices I signatures $\sigma_i, i \in I$

- ▶ s.t. $\forall i \in I$: Sig.Verify $(\sigma_i, T, \mathsf{vk}_i) = 1$
- and $|I| \ge t$ (i.e. $\ge t$ parties sign on T)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

t-of-n Signature Witness Encryption (basically)

ct = Enc(m, V, T)

 $m = Dec(ct, V, U, \sigma)$

Security: IND-CPA

• For $\leq t - 1$ dishonest keys

- and signing oracle for honest keys (Except for T*)
- A chooses m_0, m_1 , gets $Enc(m_b, V, T^*)$, guesses b

Encrypt message m

- under potential signer set $V = (vk_1, \dots, vk_n)$
- ► and reference message *T*

s.t. Decryption is possible iff we get indices I signatures $\sigma_i, i \in I$

s.t.
$$\forall i \in I$$
: Sig.Verify $(\sigma_i, T, \mathsf{vk}_i) = 1$

• and
$$|I| \ge t$$
 (i.e. $\ge t$ parties sign on T)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

イロト 不得 トイヨト イヨト

3

+

Blockchain assumptions

- Block production rate
- ► Honest majority ⇒ No premature signing

Blockchain assumptions

- Block production rate
- Honest majority
 No premature signing

Signature Witness Encryption

+

 Choose signer set V as committee keys

イロト 不得 トイヨト イヨト

3

Availability of sig

Blockchain assumptions

- Block production rate
- Honest majority
 No premature signing
- ► Known committee at decryption time ⇒ near-future

Signature Witness Encryption

+

 Choose signer set V as committee keys

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Blockchain assumptions

- Block production rate
- Honest majority
 No premature signing
- ► Known committee at decryption time ⇒ near-future

Signature Witness Encryption

+

- Choose signer set V as committee keys
- Choose reference T as predictable block header of block T.

Blockchain assumptions

- Block production rate
- Honest majority
 No premature signing
- ► Known committee at decryption time ⇒ near-future
- Custom block structure: Sign header seperately!

Signature Witness Encryption

+

- Choose signer set V as committee keys
- Choose reference T as predictable block header of block T.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$\mathsf{Claim:}\ \mathsf{IBE} \Rightarrow \mathsf{SWE}$

$\label{eq:claim: IBE} \mathsf{SWE}$ \blacktriangleright via the Naor transform we know: IBE \Rightarrow Signatures

$\mathsf{Claim:} \ \mathsf{IBE} \Rightarrow \mathsf{SWE}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ▶ via the Naor transform we know: $IBE \Rightarrow Signatures$
- this extends to: $IBE \Rightarrow Signatures + SWE$

Given IBE

- $\blacktriangleright \mathsf{pk}, \mathsf{msk} \leftarrow \mathsf{Gen}(1^{\lambda})$
- $\blacktriangleright \mathsf{sk}_{\mathit{ID}} \leftarrow \mathsf{Ext}(\mathsf{msk}, \mathit{ID})$
- ▶ ct \leftarrow Enc(*m*, pk, *ID*)
- ▶ $m \leftarrow \text{Dec}(\text{sk}_{ID}, \text{ct}, \text{pk})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Given IBE

- $\blacktriangleright \mathsf{pk}, \mathsf{msk} \leftarrow \mathsf{Gen}(1^{\lambda})$
- $\blacktriangleright \mathsf{sk}_{\mathit{ID}} \leftarrow \mathsf{Ext}(\mathsf{msk}, \mathit{ID})$
- ▶ ct \leftarrow Enc(*m*, pk, *ID*)
- ▶ $m \leftarrow \text{Dec}(\text{sk}_{ID}, \text{ct}, \text{pk})$

Construct Signature

- Gen: Output IBE.Gen
- Sign(M, msk): $\sigma_M = sk_M$
- To verify Enc random message to ID M and see if decryption works

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Given IBE

- $\blacktriangleright \mathsf{pk}, \mathsf{msk} \leftarrow \mathsf{Gen}(1^{\lambda})$
- $\blacktriangleright \mathsf{sk}_{\mathit{ID}} \gets \mathsf{Ext}(\mathsf{msk}, \mathit{ID})$
- ▶ ct \leftarrow Enc(*m*, pk, *ID*)
- ▶ $m \leftarrow \text{Dec}(\text{sk}_{ID}, \text{ct}, \text{pk})$

Construct Signature

- Gen: Output IBE.Gen
- Sign(M, msk): $\sigma_M = sk_M$
- To verify Enc random message to ID *M* and see if decryption works

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Being able to decrypt is the same as being able to sign!
SWE plausibility

Given IBE

- ▶ pk, msk ← Gen (1^{λ})
- $\blacktriangleright \mathsf{sk}_{\mathit{ID}} \leftarrow \mathsf{Ext}(\mathsf{msk}, \mathit{ID})$
- ▶ ct \leftarrow Enc(*m*, pk, *ID*)
- ▶ $m \leftarrow \text{Dec}(\text{sk}_{ID}, \text{ct}, \text{pk})$

Construct Signature + 1-of-1 SWE

- Gen: Output IBE.Gen
- Sign(M, msk): $\sigma_M = sk_M$
- To verify Enc random message to ID *M* and see if decryption works

Being able to decrypt is the same as being able to sign!

- ► SWE.Enc(*m*, *V* = {pk}, *T*): IBE.Enc(*m*, pk, *ID* = *T*)
- Decryption with σ_T = sk_T possible, if T is not signed, IND-CPA security from IBE

SWE plausibility

Given IBE

- $\blacktriangleright \mathsf{pk}, \mathsf{msk} \leftarrow \mathsf{Gen}(1^{\lambda})$
- ▶ $sk_{ID} \leftarrow Ext(msk, ID)$
- ▶ ct \leftarrow Enc(*m*, pk, *ID*)
- ▶ $m \leftarrow \text{Dec}(\text{sk}_{ID}, \text{ct}, \text{pk})$

Construct Signature + 1-of-1 SWE

- Gen: Output IBE.Gen
- Sign(M, msk): $\sigma_M = sk_M$
- To verify Enc random message to ID *M* and see if decryption works

Being able to decrypt is the same as being able to sign!

- ► SWE.Enc(*m*, *V* = {pk}, *T*): IBE.Enc(*m*, pk, *ID* = *T*)
- Decryption with σ_T = sk_T possible, if T is not signed, IND-CPA security from IBE

For t-of-n add secret sharing

Thresholdize

Assume we know a 1-of-1 SWE

• Thresholdizing it with multiplicative O(n) overhead

イロト 不得 トイヨト イヨト

Build for BLS signatures

- Deployed e.g. in Ethereum
- Efficient multi-signature

$$\mathbf{Q} \sigma_1 + \mathbf{Q} \sigma_3 = \mathbf{Q} \sigma_{1,3}$$

 Results from the Boneh-Franklin IBE via the Naor transform ⇒ 1-of-1 SWE for free

BLS - Quick Recap

Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ be a bilinear map, with Bilinear Diffie-Hellman assumption in $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T)$, and H a hash function.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

BLS Signature

Key pairs: $(sk \in \mathbb{Z}_p, vk = g_2^{sk})$ Sig $(sk, m) = H(m)^{sk}$ Verify (vk, m, σ) : Output $e(\sigma, g_2) \stackrel{?}{=} e(H(m), vk)$

BLS - Quick Recap

Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ be a bilinear map, with Bilinear Diffie-Hellman assumption in $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T)$, and H a hash function.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

BLS Signature

Key pairs: $(sk \in \mathbb{Z}_p, vk = g_2^{sk})$ Sig $(sk, m) = H(m)^{sk}$ Verify (vk, m, σ) : Output $e(\sigma, g_2) \stackrel{?}{=} e(H(m), vk)$

SWE (based on Boneh Franklin) Encrypt *m* to vk with reference *T*: $c = g_2^r, c' = (e(H(T), vk))^r \cdot g_T^m$ Notice $(e(H(T), vk))^r = e(\sigma, c)$

BLS - Quick Recap

Let $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ be a bilinear map, with Bilinear Diffie-Hellman assumption in $(\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T)$, and H a hash function.

BLS Signature

Key pairs: $(sk \in \mathbb{Z}_p, vk = g_2^{sk})$ Sig $(sk, m) = H(m)^{sk}$ Verify (vk, m, σ) : Output $e(\sigma, g_2) \stackrel{?}{=} e(H(m), vk)$

SWE (based on Boneh Franklin) Encrypt *m* to vk with reference *T*: $c = g_2^r, c' = (e(H(T), vk))^r \cdot g_T^m$ Notice $(e(H(T), vk))^r = e(\sigma, c)$

Multi Signature $Agg(\sigma_1, ..., \sigma_n) = \prod_{i \in [n]} \sigma_i$ AggVerify for m and $vk_1, ..., vk_n$: $e(\sigma, g) \stackrel{?}{=}$ $\prod_{i \in [n]} e(H(m), vk_i)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Shamir's secret sharing: Split *m* into *n* shares s_1, \ldots, s_n s.t. for any $\geq t$ shares we get $m = \sum_j s_j L_j$, for L_j Lagrange coefficients

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shamir's secret sharing: Split *m* into *n* shares s_1, \ldots, s_n s.t. for any $\geq t$ shares we get $m = \sum_j s_j L_j$, for L_j Lagrange coefficients

No information from < t shares

What about multi-signatures? Have: $c'_i = g^{s_i} \cdot e(\sigma_i, g_2^r)$, aggregated $\sigma_I = \prod_{i \in I} \sigma_i$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Shamir's secret sharing: Split *m* into *n* shares s_1, \ldots, s_n s.t. for any $\geq t$ shares we get $m = \sum_j s_j L_j$, for L_j Lagrange coefficients

No information from < t shares

What about multi-signatures? Have: $c'_i = g^{s_i} \cdot e(\sigma_i, g_2^r)$, aggregated $\sigma_I = \prod_{i \in I} \sigma_i$ Want: $g^m = \prod_{i \in I} g^{s_i L_i} = \prod_{i \in I} (c'_i^{L_i} / e(\sigma_i, g_2^r)^{L_i})$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Shamir's secret sharing: Split *m* into *n* shares s_1, \ldots, s_n s.t. for any $\geq t$ shares we get $m = \sum_j s_j L_j$, for L_j Lagrange coefficients

No information from < t shares

What about multi-signatures? Have: $c'_i = g^{s_i} \cdot e(\sigma_i, g_2^r)$, aggregated $\sigma_I = \prod_{i \in I} \sigma_i$ Want: $g^m = \prod_{i \in I} g^{s_i L_i} = \prod_{i \in I} (c'_i^{L_i} / e(\sigma_i, g_2^r)^{L_i})$ Modified Aggregation: $\sigma_I = \prod_{i \in I} \sigma_i^{L_i}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Shamir's secret sharing: Split *m* into *n* shares s_1, \ldots, s_n s.t. for any $\geq t$ shares we get $m = \sum_j s_j L_j$, for L_j Lagrange coefficients

No information from < t shares

What about multi-signatures? Have: $c'_i = g^{s_i} \cdot e(\sigma_i, g_2^r)$, aggregated $\sigma_I = \prod_{i \in I} \sigma_i$ Want: $g^m = \prod_{i \in I} g^{s_i L_i} = \prod_{i \in I} (c'_i^{L_i} / e(\sigma_i, g_2^r)^{L_i})$ Modified Aggregation: $\sigma_I = \prod_{i \in I} \sigma_i^{L_i}$ OR workaround as a service

Is that the time?!?!

- Build for BLS signatures
- Supports Multi-Signatures (at a price)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Build for BLS signatures

- Supports Multi-Signatures (at a price)
- Our SWE is a homomorphic commitment
 - supports commit & open, optimistic settings

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Build for BLS signatures

- Supports Multi-Signatures (at a price)
- Our SWE is a homomorphic commitment

supports commit & open, optimistic settings

- Our SWE is verifiable
 - integration with bulletproofs for efficiently proving properties of the contained message
 - this is done by adding a Pederson commitment and a proof of plaintext equality

Build for BLS signatures

- Supports Multi-Signatures (at a price)
- Our SWE is a homomorphic commitment

supports commit & open, optimistic settings

- Our SWE is verifiable
 - integration with bulletproofs for efficiently proving properties of the contained message
 - this is done by adding a Pederson commitment and a proof of plaintext equality

Optimizes for concrete efficiency

Let's encrypt k messages, with n committee members:

(ロ)、(型)、(E)、(E)、 E) のQ()

Let's encrypt k messages, with n committee members:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$m_k \longrightarrow C_{k,0} C_{k,1} \dots C_{k,n} \longrightarrow g^{m_k}$$

 m_k

Let's encrypt k messages, with n committee members: Size $O(n \cdot k)$ Enc Dec

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

C_{k,0} C_{k,1}

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

▶ Batching: Size O(n + k)

- Batching: Size O(n+k)
- Packing: Allow m ∈ {0,...,2^ℓ − 1} instead of bit messages (baby-step-giant-step)

- Batching: Size O(n+k)
- Packing: Allow m ∈ {0,..., 2^ℓ − 1} instead of bit messages (baby-step-giant-step)
- ▶ Bilinear setup: e : G₁ × G₂ → G_T. Group operations in G_T usually most expensive. We move most operations into G₂!

Now what?

We built concretely efficient verifiable time release encryption

- from BDH and blockchain trust-assumptions
- with small overhead for committee
 (2 signatures per block + changed aggregation)
- for a limited time horizon. \rightarrow Future work!

Now what?

We built concretely efficient verifiable time release encryption

- from BDH and blockchain trust-assumptions
- with small overhead for committee
 (2 signatures per block + changed aggregation)
- for a limited time horizon. \rightarrow Future work!
- [FMMMTV'22]: Cryptographic Oracle-based Conditional Payments
 - Similar primitive (VweTS)
 - Cool application: Construct blockchain payments conditioned on real-life events

Applications of SWE potentially see growing signer sets!

Asymptotics of O(n) in number of potential signers not ideal → Future work!

<ロ> <個> < 国> < 国> < 国> < 国> < 国</p>

- Similar IBE based construction for BLS
- Found perfect deployment environment: drand relatively fixed committee regularly signs predictable messages

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへで

- Similar IBE based construction for BLS
- Found perfect deployment environment: drand relatively fixed committee regularly signs predictable messages
- At Setup, a distributed key generation was run to get a long-term committee public verification key and a signing key share for each participant such that a threshold number of participants can sign under the public key.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

- Similar IBE based construction for BLS
- Found perfect deployment environment: drand relatively fixed committee regularly signs predictable messages
- At Setup, a distributed key generation was run to get a long-term committee public verification key and a signing key share for each participant such that a threshold number of participants can sign under the public key.
- ▶ In this setting: 1-of-1 SWE = BF IBE is enough!
- ▶ NO committe overhead, long-term encryption, O(1) ciphertext

Runs in production, with a cute GUI webapp

- Similar IBE based construction for BLS
- Found perfect deployment environment: drand relatively fixed committee regularly signs predictable messages
- At Setup, a distributed key generation was run to get a long-term committee public verification key and a signing key share for each participant such that a threshold number of participants can sign under the public key.
- ▶ In this setting: 1-of-1 SWE = BF IBE is enough!
- ▶ NO committe overhead, long-term encryption, O(1) ciphertext

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

► Runs in production, with a cute GUI webapp

Highly permissioned system

Maybe this is enough for your application and you can tune out now :)

Maybe this is enough for your application and you can tune out now :)

Now what?

Maybe this is enough for your application and you can tune out now :)

But a theorist might want:

- Long-Term Encryption across Committees
- Better asymptotics without joint key setup

Long-Term encryption across committees?

Solved if we allow the committee to be more involved Solutions with near-future solution + bootstrapping to far-future by auxiliary committees

Long-Term encryption across committees?

Solved if we allow the committee to be more involved Solutions with near-future solution + bootstrapping to far-future by auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a secret?

Long-Term encryption across committees?

Solved if we allow the committee to be more involved Solutions with near-future solution + bootstrapping to far-future by auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a secret?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Long-Term encryption across committees?

Solved if we allow the committee to be more involved Solutions with near-future solution + bootstrapping to far-future by auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a secret?

To my knowledge no "off-chain" solution known to extend a time release among multiple committees

 \Rightarrow YOUR future work?

Signature-based Witness Encryption with Compact Ciphertext

Joint work of Gennaro Avitabile¹, Nico Döttling^{2,*}, Bernardo Magri³, Christos Sakkas³, Stella Wohnig^{2,4} Published at Asiacrypt 2024 ¹ IMDEA Software Institute ² CISPA Helmholtz Center for Information Security ³ The University of Manchester ⁴ Saarland University * Funded by an ERC grant

High-level Overview so far

- Assume we know a 1-of-1 SWE (BF-IBE in BLS case)
- Thresholdizing it with multiplicative O(n) overhead

Batching via Symmetric Encryption

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How CAN we do better?

iO to the rescue

iO to the rescue

The superpower: replace circuits

 puncture a key to forget a value

Together they help forgetting a value in a circuit!

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

High-level idea

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

High-level idea

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Let a circuit create the shares.

High-level idea

Let a circuit create the shares.

Circuit gets (i, vk_i, σ_i) , if valid returns share s_i (pulled from PPRF) This is O(polylog n).

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Intuition: Honest signatures are never given to \mathcal{A} so the circuit is never queried successfully to output honest share.

Puncture all honest keys

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to \mathcal{A} so the circuit is never queried successfully to output honest share.

Puncture all honest keys

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to ${\cal A}$ so the circuit is never queried successfully to output honest share.

Puncture all honest keys

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to ${\cal A}$ so the circuit is never queried successfully to output honest share.

Puncture all honest keys

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to ${\cal A}$ so the circuit is never queried successfully to output honest share.

Puncture all honest keys

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへ⊙

Comparison

Concrete efficiency?

- BLS based construction
- Size O(n)
- Based on BDH, ROM

SWE, [DHMW'22]

Asymptotic efficiency?

- Generic construction
- Size O(polylog n)
- Uses iO

cSWE, [ADMSW'24]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Future work

- Are there less heavy compact constructions?
- Find a bootstrapping to the far-future for McFly with no committee communication/joint key setup?
- Any chance if reference messages are not (fully) known?