
A Tale of Time Release powered by Blockchain
and IBE

Gennaro Avitabile1 Nico Döttling2,* Lucjan Hanzlik2

Bernardo Magri3,4 Christos Sakkas3 Stella Wohnig2,5

1IMDEA Software Institute

2Helmholtz Center for Information Security (CISPA)

3The University of Manchester

4Primev 5Saarland University

*Funded by an ERC grant

03.05.2025, Madrid

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

Commit & Open
Offline users?

-or-

Time Lock Puzzles
Forced Opening
possible!

Motivation: Front-Running

is based on re-ordering dependent on content of txs.

So if we hide the content... JUST long enough

Commit & Open
Offline users?

-or-

Time Lock Puzzles
Forced Opening
possible!

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content...

JUST long enough

Commit & Open
Offline users?

-or-

Time Lock Puzzles
Forced Opening
possible!

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

Commit & Open
Offline users?

-or-

Time Lock Puzzles
Forced Opening
possible!

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

two ways:

Commit & Open
Offline users?

-or-

Time Lock Puzzles
Forced Opening
possible!

Motivation: Front-Running

is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

two ways:
Commit & Open

Offline users?
-or-

Time Lock Puzzles
Forced Opening
possible!

Assumptions to build Time-Lock Puzzles

Assumptions to build Time-Lock Puzzles

Just use the blockchain as TTP.

Assumptions to build Time-Lock Puzzles

Just use the blockchain as TTP.

PoS blockchain as TTP?

Observations
▶ Trust infrastructure

▶ Periodic signing, Reference clock!

▶ ⇒ Reuse trust, committee work

Goal: Off-Chain Tool

▶ Public Enc- & Decryption

▶ Minimize committee
overhead!

▶ Concrete efficiency

PoS blockchain as TTP?

Observations
▶ Trust infrastructure

▶ Periodic signing, Reference clock!

▶ ⇒ Reuse trust, committee work

Goal: Off-Chain Tool
▶ Public Enc- & Decryption

▶ Minimize committee
overhead!

▶ Concrete efficiency

McFly - Verifiable Encryption to the Future Made Practical

Joint work of Nico Döttling1,∗, Lucjan Hanzlik1, Bernardo Magri2

and Stella Wohnig1,3

Published at Financial Crypto 2023
1 Helmholtz Center for Information Security (CISPA)

2 The University of Manchester
3 Saarland University

∗ Funded by an ERC grant

Vision

Time = block height. Users have read-only access to a blockchain.

Previous work [LJKW18] How to build timelock encryption

Time = block height. Users have read-only access to a blockchain.

Previous work [LJKW18] How to build timelock encryption

Time = block height. Users have read-only access to a blockchain.

Previous work [LJKW18] How to build timelock encryption

Time = block height. Users have read-only access to a blockchain.

Our idea

Time = block height. Users have read-only access to a blockchain.

Our idea

Time = block height. Users have read-only access to a blockchain.

Signature Witness Encryption

Time = block height.

Signature Witness Encryption

Time = block height.

t-of-n Signature Witness Encryption (basically)

ct = Enc(m,V ,T)

Encrypt message m

▶ under potential signer set V = (vk1, . . . , vkn)
▶ and reference message T

m = Dec(ct,V ,U, σ)

s.t. Decryption is possible iff we get indices I
signatures σi , i ∈ I

▶ s.t. ∀i ∈ I : Sig.Verify(σi ,T , vki) = 1
▶ and |I | ≥ t (i.e. ≥ t parties sign on T)

Security: IND-CPA

▶ For ≤ t − 1 dishonest keys

▶ and signing oracle for honest keys (Except for T ∗)

▶ A chooses m0,m1, gets Enc(mb,V ,T ∗), guesses b

t-of-n Signature Witness Encryption (basically)

ct = Enc(m,V ,T)

Encrypt message m

▶ under potential signer set V = (vk1, . . . , vkn)
▶ and reference message T

m = Dec(ct,V ,U, σ)

s.t. Decryption is possible iff we get indices I
signatures σi , i ∈ I

▶ s.t. ∀i ∈ I : Sig.Verify(σi ,T , vki) = 1
▶ and |I | ≥ t (i.e. ≥ t parties sign on T)

Security: IND-CPA

▶ For ≤ t − 1 dishonest keys

▶ and signing oracle for honest keys (Except for T ∗)

▶ A chooses m0,m1, gets Enc(mb,V ,T ∗), guesses b

McFly - building on SWE

+

Blockchain assumptions

▶ Block production rate

▶ Honest majority
⇒ No premature signing

▶ Known committee at decryption
time ⇒ near-future

▶ Custom block structure:
Sign header seperately!

Signature Witness
Encryption

▶ Choose signer set V as
committee keys

▶ Choose reference T as
predictable block header of
block T.

McFly - building on SWE

+

Blockchain assumptions

▶ Block production rate

▶ Honest majority
⇒ No premature signing

▶ Known committee at decryption
time ⇒ near-future

▶ Custom block structure:
Sign header seperately!

Signature Witness
Encryption

▶ Choose signer set V as
committee keys

▶ Choose reference T as
predictable block header of
block T.

McFly - building on SWE

+

Blockchain assumptions

▶ Block production rate

▶ Honest majority
⇒ No premature signing

▶ Known committee at decryption
time ⇒ near-future

▶ Custom block structure:
Sign header seperately!

Signature Witness
Encryption

▶ Choose signer set V as
committee keys

▶ Choose reference T as
predictable block header of
block T.

McFly - building on SWE

+

Blockchain assumptions

▶ Block production rate

▶ Honest majority
⇒ No premature signing

▶ Known committee at decryption
time ⇒ near-future

▶ Custom block structure:
Sign header seperately!

Signature Witness
Encryption

▶ Choose signer set V as
committee keys

▶ Choose reference T as
predictable block header of
block T.

McFly - building on SWE

+

Blockchain assumptions

▶ Block production rate

▶ Honest majority
⇒ No premature signing

▶ Known committee at decryption
time ⇒ near-future

▶ Custom block structure:
Sign header seperately!

Signature Witness
Encryption

▶ Choose signer set V as
committee keys

▶ Choose reference T as
predictable block header of
block T.

McFly - building on SWE

+

Blockchain assumptions

▶ Block production rate

▶ Honest majority
⇒ No premature signing

▶ Known committee at decryption
time ⇒ near-future

▶ Custom block structure:
Sign header seperately!

Signature Witness
Encryption

▶ Choose signer set V as
committee keys

▶ Choose reference T as
predictable block header of
block T.

SWE plausibility

▶ via the Naor transform we know: IBE ⇒ Signatures
▶ this extends to: IBE ⇒ Signatures + SWE

SWE plausibility

Claim: IBE ⇒ SWE

▶ via the Naor transform we know: IBE ⇒ Signatures
▶ this extends to: IBE ⇒ Signatures + SWE

SWE plausibility

Claim: IBE ⇒ SWE
▶ via the Naor transform we know: IBE ⇒ Signatures

▶ this extends to: IBE ⇒ Signatures + SWE

SWE plausibility

Claim: IBE ⇒ SWE
▶ via the Naor transform we know: IBE ⇒ Signatures
▶ this extends to: IBE ⇒ Signatures + SWE

SWE plausibility

Given IBE
▶ pk,msk← Gen(1λ)
▶ skID ← Ext(msk, ID)

▶ ct← Enc(m, pk, ID)

▶ m← Dec(skID , ct, pk)
-

Being able to decrypt is the same as being able to sign!

▶ SWE.Enc(m,V = {pk},T):
IBE.Enc(m, pk, ID = T)

▶ Decryption with σT = skT possible,
if T is not signed, IND-CPA
security from IBE

a

For t-of-n add secret sharing

SWE plausibility

Given IBE
▶ pk,msk← Gen(1λ)
▶ skID ← Ext(msk, ID)

▶ ct← Enc(m, pk, ID)

▶ m← Dec(skID , ct, pk)

Construct Signature
▶ Gen: Output IBE.Gen
▶ Sign(M,msk): σM = skM
▶ To verify Enc random message to

ID M and see if decryption works
-

Being able to decrypt is the same as being able to sign!

▶ SWE.Enc(m,V = {pk},T):
IBE.Enc(m, pk, ID = T)

▶ Decryption with σT = skT possible,
if T is not signed, IND-CPA
security from IBE

a

For t-of-n add secret sharing

SWE plausibility

Given IBE
▶ pk,msk← Gen(1λ)
▶ skID ← Ext(msk, ID)

▶ ct← Enc(m, pk, ID)

▶ m← Dec(skID , ct, pk)

Construct Signature
▶ Gen: Output IBE.Gen
▶ Sign(M,msk): σM = skM
▶ To verify Enc random message to

ID M and see if decryption works
-

Being able to decrypt is the same as being able to sign!

▶ SWE.Enc(m,V = {pk},T):
IBE.Enc(m, pk, ID = T)

▶ Decryption with σT = skT possible,
if T is not signed, IND-CPA
security from IBE

a

For t-of-n add secret sharing

SWE plausibility

Given IBE
▶ pk,msk← Gen(1λ)
▶ skID ← Ext(msk, ID)

▶ ct← Enc(m, pk, ID)

▶ m← Dec(skID , ct, pk)

Construct Signature + 1-of-1 SWE
▶ Gen: Output IBE.Gen
▶ Sign(M,msk): σM = skM
▶ To verify Enc random message to

ID M and see if decryption works
-

Being able to decrypt is the same as being able to sign!

▶ SWE.Enc(m,V = {pk},T):
IBE.Enc(m, pk, ID = T)

▶ Decryption with σT = skT possible,
if T is not signed, IND-CPA
security from IBE
a

For t-of-n add secret sharing

SWE plausibility

Given IBE
▶ pk,msk← Gen(1λ)
▶ skID ← Ext(msk, ID)

▶ ct← Enc(m, pk, ID)

▶ m← Dec(skID , ct, pk)

Construct Signature + 1-of-1 SWE
▶ Gen: Output IBE.Gen
▶ Sign(M,msk): σM = skM
▶ To verify Enc random message to

ID M and see if decryption works
-

Being able to decrypt is the same as being able to sign!

▶ SWE.Enc(m,V = {pk},T):
IBE.Enc(m, pk, ID = T)

▶ Decryption with σT = skT possible,
if T is not signed, IND-CPA
security from IBE
a

For t-of-n add secret sharing

Thresholdize

▶ Assume we know a 1-of-1 SWE
▶ Thresholdizing it with multiplicative O(n) overhead

Design Choices/Properties of our SWE

▶ Build for BLS signatures
▶ Deployed e.g. in Ethereum
▶ Efficient multi-signature

▶ Results from the Boneh-Franklin IBE via the Naor transform
⇒ 1-of-1 SWE for free

BLS - Quick Recap

Let e : G1 ×G2 → GT be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1,G2,GT), and H a hash function.

BLS Signature

Key pairs: (sk ∈ Zp, vk = g sk
2)

Sig(sk,m) = H(m)sk

Verify(vk,m, σ): Output
e(σ, g2)

?
= e(H(m), vk)

SWE (based on Boneh Franklin)
Encrypt m to vk with reference T :
c = g r

2 , c
′ = (e(H(T), vk))r · gm

T

Notice (e(H(T), vk))r = e(σ, c)

Multi Signature

Agg(σ1, . . . , σn) =
∏

i∈[n] σi

AggVerify for m and
vk1, . . . , vkn:
e(σ, g)

?
=∏

i∈[n] e(H(m), vki)

BLS - Quick Recap

Let e : G1 ×G2 → GT be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1,G2,GT), and H a hash function.

BLS Signature

Key pairs: (sk ∈ Zp, vk = g sk
2)

Sig(sk,m) = H(m)sk

Verify(vk,m, σ): Output
e(σ, g2)

?
= e(H(m), vk)

SWE (based on Boneh Franklin)
Encrypt m to vk with reference T :
c = g r

2 , c
′ = (e(H(T), vk))r · gm

T

Notice (e(H(T), vk))r = e(σ, c)

Multi Signature

Agg(σ1, . . . , σn) =
∏

i∈[n] σi

AggVerify for m and
vk1, . . . , vkn:
e(σ, g)

?
=∏

i∈[n] e(H(m), vki)

BLS - Quick Recap

Let e : G1 ×G2 → GT be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1,G2,GT), and H a hash function.

BLS Signature

Key pairs: (sk ∈ Zp, vk = g sk
2)

Sig(sk,m) = H(m)sk

Verify(vk,m, σ): Output
e(σ, g2)

?
= e(H(m), vk)

SWE (based on Boneh Franklin)
Encrypt m to vk with reference T :
c = g r

2 , c
′ = (e(H(T), vk))r · gm

T

Notice (e(H(T), vk))r = e(σ, c)

Multi Signature
Agg(σ1, . . . , σn) =

∏
i∈[n] σi

AggVerify for m and
vk1, . . . , vkn:
e(σ, g)

?
=∏

i∈[n] e(H(m), vki)

Multi-Signature support? - Remember thresholdizing

Shamir’s secret sharing: Split m into n shares s1, . . . , sn
s.t. for any ≥ t shares we get m =

∑
j sjLj , for Lj Lagrange

coefficients
No information from < t shares

What about multi-signatures?
Have: c ′i= g si · e(σi , g2

r), aggregated σI = Πi∈Iσi

Want: gm = Πi∈Ig
si Li = Πi∈I (c

′
i
Li/e(σi , g2

r)Li)

Modified Aggregation: σI = Πi∈Iσ
Li
i OR workaround as a service

Multi-Signature support? - Remember thresholdizing

Shamir’s secret sharing: Split m into n shares s1, . . . , sn
s.t. for any ≥ t shares we get m =

∑
j sjLj , for Lj Lagrange

coefficients
No information from < t shares

What about multi-signatures?
Have: c ′i= g si · e(σi , g2

r), aggregated σI = Πi∈Iσi

Want: gm = Πi∈Ig
si Li = Πi∈I (c

′
i
Li/e(σi , g2

r)Li)

Modified Aggregation: σI = Πi∈Iσ
Li
i OR workaround as a service

Multi-Signature support? - Remember thresholdizing

Shamir’s secret sharing: Split m into n shares s1, . . . , sn
s.t. for any ≥ t shares we get m =

∑
j sjLj , for Lj Lagrange

coefficients
No information from < t shares

What about multi-signatures?
Have: c ′i= g si · e(σi , g2

r), aggregated σI = Πi∈Iσi
Want: gm = Πi∈Ig

si Li = Πi∈I (c
′
i
Li/e(σi , g2

r)Li)

Modified Aggregation: σI = Πi∈Iσ
Li
i OR workaround as a service

Multi-Signature support? - Remember thresholdizing

Shamir’s secret sharing: Split m into n shares s1, . . . , sn
s.t. for any ≥ t shares we get m =

∑
j sjLj , for Lj Lagrange

coefficients
No information from < t shares

What about multi-signatures?
Have: c ′i= g si · e(σi , g2

r), aggregated σI = Πi∈Iσi
Want: gm = Πi∈Ig

si Li = Πi∈I (c
′
i
Li/e(σi , g2

r)Li)

Modified Aggregation: σI = Πi∈Iσ
Li
i

OR workaround as a service

Multi-Signature support? - Remember thresholdizing

Shamir’s secret sharing: Split m into n shares s1, . . . , sn
s.t. for any ≥ t shares we get m =

∑
j sjLj , for Lj Lagrange

coefficients
No information from < t shares

What about multi-signatures?
Have: c ′i= g si · e(σi , g2

r), aggregated σI = Πi∈Iσi
Want: gm = Πi∈Ig

si Li = Πi∈I (c
′
i
Li/e(σi , g2

r)Li)

Modified Aggregation: σI = Πi∈Iσ
Li
i OR workaround as a service

Is that the time?!?!

Design Choices/Properties of our SWE

▶ Build for BLS signatures
▶ Supports Multi-Signatures (at a price)

▶ Our SWE is a homomorphic commitment

▶ supports commit & open, optimistic settings

▶ Our SWE is verifiable

▶ integration with bulletproofs for efficiently proving properties
of the contained message

▶ this is done by adding a Pederson commitment and a proof of
plaintext equality

▶ Optimizes for concrete efficiency

Design Choices/Properties of our SWE

▶ Build for BLS signatures
▶ Supports Multi-Signatures (at a price)
▶ Our SWE is a homomorphic commitment

▶ supports commit & open, optimistic settings

▶ Our SWE is verifiable

▶ integration with bulletproofs for efficiently proving properties
of the contained message

▶ this is done by adding a Pederson commitment and a proof of
plaintext equality

▶ Optimizes for concrete efficiency

Design Choices/Properties of our SWE

▶ Build for BLS signatures
▶ Supports Multi-Signatures (at a price)
▶ Our SWE is a homomorphic commitment

▶ supports commit & open, optimistic settings
▶ Our SWE is verifiable

▶ integration with bulletproofs for efficiently proving properties
of the contained message

▶ this is done by adding a Pederson commitment and a proof of
plaintext equality

▶ Optimizes for concrete efficiency

Design Choices/Properties of our SWE

▶ Build for BLS signatures
▶ Supports Multi-Signatures (at a price)
▶ Our SWE is a homomorphic commitment

▶ supports commit & open, optimistic settings
▶ Our SWE is verifiable

▶ integration with bulletproofs for efficiently proving properties
of the contained message

▶ this is done by adding a Pederson commitment and a proof of
plaintext equality

▶ Optimizes for concrete efficiency

Efficiency?

Let’s encrypt k messages, with n committee members:

Size O(n · k)

▶ Batching: Size O(n + k)

▶ Packing: Allow m ∈ {0, . . . , 2ℓ − 1} instead of bit messages
(baby-step-giant-step)

▶ Bilinear setup: e : G1 × G2 → GT . Group operations in GT

usually most expensive. We move most operations into G2!

Efficiency?

Let’s encrypt k messages, with n committee members:

Size O(n · k)

▶ Batching: Size O(n + k)

▶ Packing: Allow m ∈ {0, . . . , 2ℓ − 1} instead of bit messages
(baby-step-giant-step)

▶ Bilinear setup: e : G1 × G2 → GT . Group operations in GT

usually most expensive. We move most operations into G2!

Efficiency?

Let’s encrypt k messages, with n committee members: Size O(n · k)

▶ Batching: Size O(n + k)

▶ Packing: Allow m ∈ {0, . . . , 2ℓ − 1} instead of bit messages
(baby-step-giant-step)

▶ Bilinear setup: e : G1 × G2 → GT . Group operations in GT

usually most expensive. We move most operations into G2!

Efficiency?

Let’s encrypt k messages, with n committee members: Size O(n · k)

▶ Batching: Size O(n + k)

▶ Packing: Allow m ∈ {0, . . . , 2ℓ − 1} instead of bit messages
(baby-step-giant-step)

▶ Bilinear setup: e : G1 × G2 → GT . Group operations in GT

usually most expensive. We move most operations into G2!

Efficiency?

Let’s encrypt k messages, with n committee members: Size O(n · k)

▶ Batching: Size O(n + k)

▶ Packing: Allow m ∈ {0, . . . , 2ℓ − 1} instead of bit messages
(baby-step-giant-step)

▶ Bilinear setup: e : G1 × G2 → GT . Group operations in GT

usually most expensive. We move most operations into G2!

Efficiency?

Let’s encrypt k messages, with n committee members: Size O(n · k)

▶ Batching: Size O(n + k)

▶ Packing: Allow m ∈ {0, . . . , 2ℓ − 1} instead of bit messages
(baby-step-giant-step)

▶ Bilinear setup: e : G1 × G2 → GT . Group operations in GT

usually most expensive. We move most operations into G2!

Now what?

We built concretely efficient verifiable time release encryption
▶ from BDH and blockchain trust-assumptions
▶ with small overhead for committee

(2 signatures per block + changed aggregation)
▶ for a limited time horizon. → Future work!

▶ [FMMMTV ′22]: Cryptographic Oracle-based Conditional
Payments
▶ Similar primitive (VweTS)
▶ Cool application: Construct blockchain payments conditioned

on real-life events

Applications of SWE potentially see growing signer sets!
▶ Asymptotics of O(n) in number of potential signers not ideal
→ Future work!

Now what?

We built concretely efficient verifiable time release encryption
▶ from BDH and blockchain trust-assumptions
▶ with small overhead for committee

(2 signatures per block + changed aggregation)
▶ for a limited time horizon. → Future work!
▶ [FMMMTV ′22]: Cryptographic Oracle-based Conditional

Payments
▶ Similar primitive (VweTS)
▶ Cool application: Construct blockchain payments conditioned

on real-life events

Applications of SWE potentially see growing signer sets!
▶ Asymptotics of O(n) in number of potential signers not ideal
→ Future work!

tlock by [Gailly, Melissaris, Romailler]

▶ Similar IBE based construction for BLS
▶ Found perfect deployment environment: drand

relatively fixed committee regularly signs predictable messages
▶ At Setup, a distributed key generation was run to get a

long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

▶ In this setting: 1-of-1 SWE = BF IBE is enough!
▶ NO committe overhead, long-term encryption, O(1) ciphertext
▶ Runs in production, with a cute GUI webapp

▶ Highly permissioned system

tlock by [Gailly, Melissaris, Romailler]
▶ Similar IBE based construction for BLS
▶ Found perfect deployment environment: drand

relatively fixed committee regularly signs predictable messages

▶ At Setup, a distributed key generation was run to get a
long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

▶ In this setting: 1-of-1 SWE = BF IBE is enough!
▶ NO committe overhead, long-term encryption, O(1) ciphertext
▶ Runs in production, with a cute GUI webapp

▶ Highly permissioned system

tlock by [Gailly, Melissaris, Romailler]
▶ Similar IBE based construction for BLS
▶ Found perfect deployment environment: drand

relatively fixed committee regularly signs predictable messages
▶ At Setup, a distributed key generation was run to get a

long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

▶ In this setting: 1-of-1 SWE = BF IBE is enough!
▶ NO committe overhead, long-term encryption, O(1) ciphertext
▶ Runs in production, with a cute GUI webapp

▶ Highly permissioned system

tlock by [Gailly, Melissaris, Romailler]
▶ Similar IBE based construction for BLS
▶ Found perfect deployment environment: drand

relatively fixed committee regularly signs predictable messages
▶ At Setup, a distributed key generation was run to get a

long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

▶ In this setting: 1-of-1 SWE = BF IBE is enough!
▶ NO committe overhead, long-term encryption, O(1) ciphertext
▶ Runs in production, with a cute GUI webapp

▶ Highly permissioned system

tlock by [Gailly, Melissaris, Romailler]
▶ Similar IBE based construction for BLS
▶ Found perfect deployment environment: drand

relatively fixed committee regularly signs predictable messages
▶ At Setup, a distributed key generation was run to get a

long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

▶ In this setting: 1-of-1 SWE = BF IBE is enough!
▶ NO committe overhead, long-term encryption, O(1) ciphertext
▶ Runs in production, with a cute GUI webapp

▶ Highly permissioned system

Now what?

Maybe this is enough for your application and you can tune out
now :)

But a theorist might want:
▶ Long-Term Encryption across Committees
▶ Better asymptotics without joint key setup

Now what?

Maybe this is enough for your application and you can tune out
now :)

But a theorist might want:
▶ Long-Term Encryption across Committees
▶ Better asymptotics without joint key setup

Now what?

Maybe this is enough for your application and you can tune out
now :)

But a theorist might want:
▶ Long-Term Encryption across Committees
▶ Better asymptotics without joint key setup

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution + bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a
secret?

To my knowledge no "off-chain" solution known to extend a time
release among multiple committees

⇒ YOUR future work?

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution + bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a
secret?

To my knowledge no "off-chain" solution known to extend a time
release among multiple committees

⇒ YOUR future work?

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution + bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a
secret?

To my knowledge no "off-chain" solution known to extend a time
release among multiple committees

⇒ YOUR future work?

Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution + bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a
secret?

To my knowledge no "off-chain" solution known to extend a time
release among multiple committees

⇒ YOUR future work?

Signature-based Witness Encryption with Compact
Ciphertext

Joint work of Gennaro Avitabile1, Nico Döttling2,∗, Bernardo
Magri3, Christos Sakkas3, Stella Wohnig2,4

Published at Asiacrypt 2024
1 IMDEA Software Institute

2 CISPA Helmholtz Center for Information Security
3 The University of Manchester

4 Saarland University
∗ Funded by an ERC grant

High-level Overview so far

▶ Assume we know a 1-of-1 SWE (BF-IBE in BLS case)
▶ Thresholdizing it with multiplicative O(n) overhead

▶ How CAN we do better?

iO to the rescue

iO to the rescue

The superpower:
replace circuits puncture a key to forget a value

Together they help forgetting a value in a circuit!

High-level idea

Let a circuit create the shares.
Circuit gets (i , vki , σi), if valid returns share si (pulled from PPRF)
This is O(polylog n).

High-level idea

Let a circuit create the shares.

Circuit gets (i , vki , σi), if valid returns share si (pulled from PPRF)
This is O(polylog n).

High-level idea

Let a circuit create the shares.
Circuit gets (i , vki , σi), if valid returns share si (pulled from PPRF)
This is O(polylog n).

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.
Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.
Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.
Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.
Puncture all honest keys

Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.
Puncture all honest keys

Comparison

Future work

▶ Are there less heavy compact constructions?
▶ Find a bootstrapping to the far-future for McFly with no

committee communication/joint key setup?
▶ Any chance if reference messages are not (fully) known?

	Introduction

