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is based on re-ordering dependent on content of txs.
So if we hide the content... JUST long enough

ﬂ
09 D

Committee

Open lock

and execute

in order

e User
Mempool

or client reveal

two ways:

Commit & Open

Offline users?
_Or_

=g K

{2

Time Lock Puzzles

Forced Opening
possible!




Assumptions to build Time-Lock Puzzles




Assumptions to build Time-Lock Puzzles




Assumptions to build Time-Lock Puzzles

Just use the blockchain as TTP.
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Observations
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» Trust infrastructure ublic Enc- & Decryption
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» Periodic signing, Reference clock! 1nimize committee
overhead!

» — Reuse trust, committee work .
» Concrete efficiency
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Time = block height. Users have read-only access to a blockchain.
ct=Enc(m,T)

m=Dec(ct,T)
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t-of-n Signature Witness Encryption (basically)

@ Encrypt message m
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ct = Enc(m, V, T) » and reference message T
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m = Dec(ct, V, U, 0) » and |/| >t (i.e. >t parties signon T)



t-of-n Signature Witness Encryption (basically)

@ Encrypt message m
» under potential signer set V = (vky,...,vk,)
ct = Enc(m, V, T) » and reference message T

s.t. Decryption is possible iff we get indices /
>@< signatures o;,i € |
» s.t. Viel:SigVerify(o;, T,vk;) =1
m = Dec(ct, V, U, 0) » and |/| >t (i.e. >t parties signon T)

Security: IND-CPA
» For < t — 1 dishonest keys
» and signing oracle for honest keys (Except for T*)

» A chooses mg, my, gets Enc(myp, V, T*), guesses b
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McFly - building on SWE

Block 2

Block 3 % Block T +

Q Availability of sig

Blockchain assumptions

>

>

Block production rate

Honest majority
= No premature signing

Known committee at decryption
time = near-future

Custom block structure:
Sign header seperately!
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Q Availability of

sig

IND-CPA security Correct public

decryption

& -+NIZK Proof system over

properties of m

Signature Witness
Encryption

» Choose signer set V as
committee keys

» Choose reference T as
predictable block header
block T.
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Given IBE Construct Signature + 1-of-1 SWE
> pk, msk < Gen(1*) » Gen: Output IBE.Gen
» skp < Ext(msk, ID) » Sign(M,msk): op = sky
» ct «+ Enc(m, pk, ID) » To verify Enc random message to
» m < Dec(skp, ct, pk) ID M and see if decryption works

Being able to decrypt is the same as being able to sign!
» SWE.Enc(m, V = {pk}, T):
IBE.Enc(m, pk,ID = T)
» Decryption with o = skt possible,

if T is not signed, IND-CPA
security from IBE

For t-of-n add secret sharing



Thresholdize

» Assume we know a 1-of-1 SWE

» Thresholdizing it with multiplicative O(n) overhead
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Design Choices/Properties of our SWE

» Build for BLS signatures

» Deployed e.g. in Ethereum
» Efficient multi-signature

9‘014'"03:0

L3

» Results from the Boneh-Franklin IBE via the Naor transform
= 1-of-1 SWE for free



BLS - Quick Recap

Let e : G1 x Go — G7 be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1, G2, G7), and H a hash function.
BLS Signature
Key pairs: (sk € Zp, vk = g5¥)
Sig(sk, m) = H(m)*
Verify(vk, m, o): Output
e(0, &) = e(H(m), vk)
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BLS - Quick Recap

Let e : G1 x Go — G7 be a bilinear map, with Bilinear
Diffie-Hellman assumption in (G1, G2, G7), and H a hash function.

BLS Signature
Key pairs: (sk € Zp, vk = g5¥)
Sig(sk, m) = H(m)™

Multi Signature
Agg(oy,...,0p) = Hie[ﬁ] gi

Verify(vk, m, o): Output AggVerify for m and
e(0,82) = e(H(m), vk) vki, ..., vk
?
SWE (based on Boneh Franklin) e(o,8) =
Encrypt m to vk with reference T: [Tic(s e(H(m), vk;)

¢ =g, ¢ = (e(H(T),vk))" - g7
Notice (e(H(T),vk))" = e(o, ¢)



Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,
s.t. for any > t shares we get m =3 s;L;, for L; Lagrange
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Multi-Signature support? - Remember thresholdizing

Shamir's secret sharing: Split m into n shares s1,... s,

s.t. for any > t shares we get m =}, s;L;, for L; Lagrange
coefficients

No information from < t shares

t-of-n
Enc multi-sig Dec”
—
e 5L IBEGRT)
" m E
[m] ~
EE

What about multi-signatures?

Have: ¢/= g% - e(0j, "), aggregated o) = MNj¢cj0;

Want: g™ = Mie;g%" = Migy(c/" /e(0i, 82)")

Modified Aggregation: o, = I'I;E,a,.L" OR workaround as a service



Is that the time?!?!
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Design Choices/Properties of our SWE

» Build for BLS signatures
» Supports Multi-Signatures (at a price)
» Our SWE is a homomorphic commitment
» supports commit & open, optimistic settings

» Our SWE is verifiable

» integration with bulletproofs for efficiently proving properties
of the contained message

» this is done by adding a Pederson commitment and a proof of
plaintext equality

» Optimizes for concrete efficiency
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Efficiency?

Let's encrypt k messages, with n committee members: Size O(n- k)
Enc

Dec
ol law @i - len € [my] [Enc(mygl.T)
g Enc(m,g°,T)

» Batching: Size O(n + k)

» Packing: Allow m € {0,...,2° — 1} instead of bit messages
(baby-step-giant-step)

» Bilinear setup: e : Gy X Go — Gt. Group operations in Gt
usually most expensive. We move most operations into Gy!
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We built concretely efficient verifiable time release encryption
» from BDH and blockchain trust-assumptions

» with small overhead for committee
(2 signatures per block + changed aggregation)
» for a limited time horizon. — Future work!



Now what?

We built concretely efficient verifiable time release encryption
» from BDH and blockchain trust-assumptions

» with small overhead for committee
(2 signatures per block + changed aggregation)

» for a limited time horizon. — Future work!

» [FMMMTV'22]: Cryptographic Oracle-based Conditional
Payments

» Similar primitive (VweTS)
» Cool application: Construct blockchain payments conditioned
on real-life events
Applications of SWE potentially see growing signer sets!

» Asymptotics of O(n) in number of potential signers not ideal
— Future work!
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Similar IBE based construction for BLS

Found perfect deployment environment: drand
relatively fixed committee regularly signs predictable messages

At Setup, a distributed key generation was run to get a
long-term committee public verification key and a signing key
share for each participant such that a threshold number of
participants can sign under the public key.

In this setting: 1-of-1 SWE = BF IBE is enough!
NO committe overhead, long-term encryption, O(1) ciphertext

Runs in production, with a cute GUI webapp
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Highly permissioned system
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Now what?

Maybe this is enough for your application and you can tune out
now :)

But a theorist might want
» Long-Term Encryption across Committees

> Better asymptotics without joint key setup
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Long-Term encryption across committees?

Solved if we allow the committee to be more involved
Solutions with near-future solution 4+ bootstrapping to far-future by
auxiliary committees

Simple example: [BGGHKLRR20] - Can a public blockchain keep a

secret?
share reshare reshare (@) open
= m o @®89 op
appoint appoint o appoint
528 22

To my knowledge no "off-chain" solution known to extend a time
release among multiple committees

= YOUR future work?
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High-level Overview so far

» Assume we know a 1-of-1 SWE (BF-IBE in BLS case)
» Thresholdizing it with multiplicative O(n) overhead

t-of-n
Enc signatures Dec
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secre reconstruct
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Batching via Symmetric Encryption

» How CAN we do better?







/O to the rescue

The superpower:
replace circuits

puncture a key to forget a value
If functionally equivalent

.Mﬁ.-_

Together they help forgetting a value in a circuit!

i0 i0 PPRF

DA



High-level idea
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High-level idea

t-of-n
Dec
secret

snbatures
sh

/'/' . reconstruct
«——Vkl

AN

E XK
'\
vk,

m] [eEmi]  [m=Dec(eK)]
Let a circuit create the shares

Circuit gets (i, vk;, 0;), if valid returns share s; (pulled from PPRF)
This is O(polylog n).



Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created

Want: Forget all honest shares, use secret sharing security.
Intuition: Honest signatures are never given to A so the circuit is never queried

successfully to output honest share.
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Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
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successfully to output honest share.
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Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness
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Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness
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Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness

Hardwired share

(o] [ o] | | (e e ] KD | 5 ] ] X
> >
until

<t shares
Enc Key PPRF Key Enc Key PPRF Key Enc Key PPRF Key

Circnit. growth
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shares at once

Adv doesn‘t get o1
# A verifying o1

Puncturable
Signatures




Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness
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Security Sketch

Fully non-adaptive: reference T, corrupted parties known, all keys honestly created
Want: Forget all honest shares, use secret sharing security.

Intuition: Honest signatures are never given to A so the circuit is never queried
successfully to output honest share.

Puncture all honest keys

Replace by PRG randomness
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Comparison

P

Compiler
[DHMW*22]
Proof of Stake

Blockchain

\ Time Release Encryption /

Concrete efficiency? Asymptotic efficiency?
* BLS based construction * Generic construction
* Size O(n) * Size O(polylog n)

* Based on BDH, ROM e Uses iO

SWE, [DHMW*22| c¢SWE, [ADMSW*24]




Future work

> Are there less heavy compact constructions?

» Find a bootstrapping to the far-future for McFly with no
committee communication/joint key setup?

» Any chance if reference messages are not (fully) known?
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