A2 PURDUE h

Jigsaw: Doubly Private Smart Contracts

Sanjam Garg Aarushi Goel
UC Berkeley Purdue University
Dimitris Kolonelos Rohit Sinha
UC Berkeley Swirlds Labs

Workshop on Cryptographic Tools for Blockchains 2025, Madrid
3 May 2025 34194

Outline

Background
Our Contributions
Jigsaw

Conclusions and Open Problems

2/24

Background

Smart Contract Platforms

Smanrt Contract

1 // SPDX-License-Identifier: MIT
pragma solidity 70.8.0;
I“p“t data contract SimpleStorage { OUtPUt data

uint private storedNumber;

// Function to set a number
function setNumber(uint _num) public {
storedNumber =

X — | — y = f(1)

// Function to get the stored number
function getNumber() public view returns (uin
return storedNumber;
b
by

Decentralized
Computing Machine

Blockchain
Blocki -1 Block i+ 1

3/24

Example — DEX

x; = {2 BTC, BTC—ETH, 1:30}

Y1 =160 ETH }
\ vi»={0BTC}
Smart Contract / = DEX _} tx

X, = {70 ETH, ETH-BTC, 30:1}

Block :

tx = {xl,X2, DEX’yl’yZ}

4/24

Privacy Leakage

Everything is public on Blockchain!

o* Computation (functions)

% Data (input data, output data)

5/24

Privacy Leakage

Everything is public on Blockchain!

o* Computation (functions)

% Data (input data, output data)

Well understood issue, with real-world de-anonymization attacks:

Quantitative Analysis of the Full Bitcoin A Fistful of Bitcoins: Characterizing Payments Among
Men with No Names

Transaction Graph

Sarah Meiklejohn Marjori Pomarole Grant Jordan

Dorit Ron and Adi Shamir Kirill Levchenko Damon McCoy' Geoffrey M. Voelker ~ Stefan Savage

Academic:

Evaluating User Privacy in Bitcoin How to Peel a Million: Validating and Expanding Bitcoin Clusters

Elli Androulaki!, Ghassan O. Karame?, Marc Roeschlin?, George Kapposl, Haaroon Yousaf!, Rainer Stiitz2, Sofia Rollet?, Bernhard Haslhofer?, and Sarah
Tobias Scherer!, and Srdjan Capkun'! Meiklejohn!

Industry: & Chainalysis Crystal W ELLIFPTILC

5/24

Privacy-Preserving Smart Contracts (PPSC)

zkSNARKsS

MPC
(+zkSNARKS)

FHE
(+zkSNARKS)

TEE

Hawk
zkay

zkHAWK

/eestar

Arbitrum

A s
, Zapper

, V-zkHAWK

SmartFHE

Ekiden

, VERIZEXE

, Eagle

6/24

Privacy-Preserving Smart Contracts (PPSC)

Hawk
zkSNARKSs
zkay
MPC
kKHAWK
(+zkSNARKs) °
FHE /eestar
(+zkSNARKS)
TEE Arbitrum

Specific Applications: Zerocash

Ratel

ZEXE VERIZEXE
, Zapper
, V-zkHAWK , Eagle
SmartFHE
Ekiden

(Transactions), P2DEX
(MEV Prevention), ...

(DEX),

6/24

Privacy-Preserving Smart Contracts (PPSC)

Hawk ZEXE VERIZEXE
zkSNARKSs
Zkaﬁ@ , Zapper
MPC
KHAWK V-zkHAWK Eaaql
(+zkSNARKs) / ° : =
FHE /eestar SmartFHE
(+zkSNARKS) :
TEE Arbitrum Ekiden
Specific Applications: Zerocash (Transactions), P2DEX (DEX),

Ratel (MEV Prevention), ... i,

zkSNARK-based PPSC

Hawk , ZEXE , Zapper

x; = {2 BTC, BTC—ETH, 1:30} vi1 ={60ETH)
yl,z = { 0 BTC }

\
Smart Contract /f = DEX _}
/ Y1, ={2BTC}

x, = {70 ETH, ETH-BTC, 30:1) ’

7/24

zkSNARK-based PPSC

Hawk ZEXE , Zapper

zkSNARKSs

7/24

zkSNARK-based PPSC

Hawk, Zapper: bli
Hawk ZEXE Zapper Wk, Zapper: / public

ZEXE: f private
zkSNARKSs

On-chain: zkSNARK 7 for
Block i d(x,y) : f(x) =y

7/24

Off-Chain Privacy Leak

Off-Chain i On-Chain

Fes\

x, = {2 BTC, BTC—ETH, 1:30}

ey

/ \, PrOVG(D EX9 X15X25 V15 yZ) ‘ | JU
x, ={/0 ETH, ETHoBTC, 30:1} N\ :

Private

8/24

Off-Chain Privacy Leak

Off-Chain On-Chain

x, = {2 BTC, BTC—~ETH, 1:30}

ey

"\ | ,"I‘OVG(D EX, .xl o X2, yl o yz) '

x, = {70 ETH, ETH&BTC, 30:1)

Private

< A trusted off-chain entity learns the data.

Off-Chain Privacy Leak

< Non-affordable in applications: Trading, Auctions, DeFi,...

8/24

Our Contributions

Our Contributions

Doubly Private Smart Contracts (DPSC) Framework
Jigsaw: Cryptographic Construction ot DPSC
Implemention: <3s off-chain, 40-50x faster

Applications

9/24

Doubly Private Smart Contracts Framework

Clients Servers Blockchain

. (Privacy Provider Service)

1. Integrity

- ’ 2. Fire-and-Forget

3. Anonymity
4. Off-Chain Privacy

10/24

Our Cryptographic Approach

Add another layer of privacy: MPC over zkSNARKSs

zkSNARKSs

11/24

Our Cryptographic Approach

Add another layer of privacy: MPC over zkSNARKSs

MPC

OO
zkSNARKSs

11/24

Jigsaw

Jigsaw from a bird’s-eye view

Outsourcing in a privacy-preserving manner a zkSNARK computation

Clients Servers Blockchain

. (Privacy Provider Service)
— f

A3

”
Secret-Shared I " I
! data

zkSNARK
transaction

12/24

Jigsaw from a bird’s-eye view

Outsourcing in a privacy-preserving manner a 7=~ tion

Clients Server Privacy Serversin -
place of trusted off-chain

entity

(Privacy Provide

Zcash/ZEXE
architecture

zkSNARK

. transaction
Secret-Shared I “ I
!fE data

12/24

Jigsaw Architecture

Zcash/ZEXE data structures [BSCGGMTV 14

cm = Com(apk, payload, ...)
sh = PRF¢(r)

% Record: r = (cm, apk, payload, sn, ...)

S
< Blockchain state: @ root = MerkleCom(cmy,cm>, ...,cm,)

T
< Transaction: = txX = (SNyyens, CMyeys 7,)

7 zkSNARK for: (1) sng,,,; valid (cmy,.,; € root,...)

(2) cm,,,,, well formed

(3) f(payload ,payload =) =1

13/24

Jigsaw Architecture

Zcash/ZEXE data structures [BSCGGMTV 14

cm = Com(apk, payload, ...)
sh = PRF¢(r)

% Record: r = (cm, apk, payload, sn, ...)

OO
< Blockchain state: @ root = MerkleCom(cmy,cm>, ...,cm,)

(N
< Transaction: = tx = (SNg,e, CMyeys 7T, f) *ZEXE also hides f

7 zkSNARK for: (1) sng,,,; valid (cmy,.,; € root,...)

(2) cm,,,,, well formed

(3) f(payload ,payload =) =1

13/24

Example — DEX

r, = (...(2,BTC)...)
BTCsETH Smart Contract /f = DEX

1:30
g ——————————

r, = (...(70,ETH)...)
ETH<—BTC
30:1

r;; =(...(60,ETH)...)

r;,=(...(0,BTC)...)

r,; =(...(2,BTC)...)

ry, = (...(10,ETH)...)

tx = (sny, snp, cmy |, M5, CMy |, CMy 7, 7, DEX)

14/24

Challenges

1. Interaction: Output records computed by the Servers — Clients
have to come back for their secret keys.

2. Efficiency: How does an MPC compute a zkSNARK?

15/24

Challenges

1. Interaction: Output records computed by the Servers — Clients
have to come back for their secret keys.

Homomorphic commitments: Clients pre-generate dummy records with their
secret keys — Servers ‘correct’ them homomorphically and post them on-chain

2. Efficiency: How does an MPC compute a zkSNARK?

15/24

Challenges

1. Interaction: Output records computed by the Servers — Clients
have to come back for their secret keys.

Homomorphic commitments: Clients pre-generate dummy records with their
secret keys — Servers ‘correct’ them homomorphically and post them on-chain

2. Efficiency: How does an MPC compute a zkSNARK?

Collaborative zkSNARKs

15/24

Collaborative zkSNARKSs

Collaborative zkNARKs: Efficient MPC for a zkSNARK Prover

—’ oroot m for R(x; w)

--------.

N G T e

. Witness w,

\

16/24

Collaborative zkSNARKSs

Collaborative zkNARKs: Efficient MPC for a zkSNARK Prover

No server knows the full witness

< Part of the witness: w — (w;||w,||w5)
< Share of the witness: w — ([w];, [W],, [W];)

Server 3

5
O
O
O
ey
S
==
O
ST
=
=
=
) —

Qe I NN EN NN SN W EE NN N Wy
N]

. Witness w, Witness wj

\

16/24

Collaborative zkSNARKSs — Efficiency Limitations

1. Each Server's i computation is proportional to [|w|| not |[w]]

2. Communication overhead: Multiplication depth is of essence

Traditional
zkSNARKSs

gates) computation

Collaborative
zkSNARKSs

O(#gates) c omputatlon “n‘ Round 1
Round 2

O(muilt. depth) communication

17/24

Collaborative zkSNARKSs — Efficiency Limitations

1. Each Server's i computation is proportional to [|w|| not |[w]]

2. Communication overhead: Multiplication depth is of essence

Traditional
zkSNARKSs

gates) computation

Collaborative
zkSNARKSs

O(#gates) computatlon

O(muilt. depth) communication

X1 X5

\X

onoze

E.g. Poseidon Hash is not suitable for Collaborative SNARKSs

Round1

Round 2

17/24

Collaborative zkSNARKSs — Efficiency Limitations

1. Each Server's i computation is proportional to [|w|| not |[w]]

2. Communication overhead: Multiplication depth is of essence

Traditional Collaborative X X Xs
zkSNARKSs zkSNARKSs X

+
O(#gates) computation QO(#qgates) tati Round 1
gates compu ation G“O‘O
>2min for Round ,

Merkle Tree O(mult. depth) communication

opening

E.g. Poseidon Hash is not suitable for Collaborative SNARKSs

17/24

Jigsaw COre TeChnique (1) 7 ZkSNARK for: (1) sng,.,; valid (cmy,,,; € root,...)

(2) cm,,,, well formed

(3) f(payload , ,payload) =1
5 EE——

Core Observation: The bulk of the work includes only local data

18/24

Jigsaw COre TeChnique (1) 7 ZkSNARK for: (1) sng,.,; valid (cmy,,,; € root,...)

(2) cm,,,, well formed

(3) f(payload , ,payload) =1

Core Observation: The bulk of the work includes only local data

» Each client computes a local zkSNARK for their data
» Servers compute a collaborative zkSNARK for what's left

18/24

Jigsaw Core TeChnique (1) 7 zkSNARK for: (1) sng,.,; valid (cmg,,.,; € root,...)

(2) cm,,,, well formed

(3) f(payload , ,payload) =1

Core Observation: The bulk of the work includes only local data

viain Ideéa.

» Each client computes a local zkSNARK for their data
» Servers compute a collaborative zkSNARK for what's left

Local z; for (1)+(2),

Local 7, for (1)+(2), Collaborative

(W] o 1r,,pcfor(3) 1

00 1

18/24

Jigsaw Core Technique (2)

Careful Decomposition of the relation:

Client ; Servers
| ocal zkSNARK TT; for: Collaborative zkSNARK TT: for:
> Merkle tree inclusions - Execution of f
» Commitments opening > A few field operations

» PRF computations

19/24

Jigsaw Core Technique (2)

Careful Decomposition of the relation:

Client ; Servers
| ocal zkSNARK TT; for: Collaborative zkSNARK TT: for:
> Merkle tree inclusions - Execution of f
» Commitments opening > A few fie' U operations

» PRF computations

Extremely simple for
many applications
(e.g. DEX, auction)

19/24

More Technical Subtleties

- Commit-and-prove zkSNARKS to ensure r;, 1,0~ are over the same data.
= Commit-and-prove PLONK variant.

- Signatures of Knowledge to bind z; with the intended f.

- Proofs of correct secret-sharing to prevent malicious clients.

20/24

Applications

VOTE

Lotteries \Yeldlgle

21/24

Implementation (1)

Local zkSNARK:

% (i) TurboPLONK + (ii) Custom SNARK tor CP-link + (iii) Custom
SNARK of Correct Secret Sharing
% Macbook Pro with 8-core M2 CPU and 16 GB RAM

% Multicore implementation

Proving Time (sec): ~ 1.3 — 3.6

22/24

I m plementation (2) 40-50x faster than

generic Collaborative

Collaborative zkSNARK: zkSNARKS

% Taceo toolchain implementation
% 3 AWS c4d.xlarge machines, with 4 vCPUs and 8 GB RAM each

Avplicats p . Ext Witness Gen | Plonk Proof Gen
ppiication | Tarameter | AN | WAN | LAN | WAN

Atomic Swap
| ds [1 225 | 21
50 bids 85

Cottery | 100entries | 0095 | 0165 | 0.135 | 0885
103
~f0voters [0095 | 065 | 0155 | 091s
103’
221

23/24

I m plementaticn (2) 40-50x faster than

generic Collaborative

Collaborative zkSNARK: zkSNARKS

% Taceo toolchain implementation
% 3 AWS c4d.xlarge machines, with 4 vCPUs and 8 GB RAM each

Avplicats p . Ext Witness Gen | Plonk Proof Gen
ppiication | Tarameter | AN | WAN | LAN | WAN

Atomic Swap
. ds | 102 21

Cottery | 100 cntries | 0.095 | 0.165 | 0435 | 0885
f0voters | 0095 | 016s | 055 | 091s

Verification: Gas Cost (K): ~432 + 472*#clients

23/24

Conclusions

Conclusions and Future Work

Conclusions:
< More elaborate applications —> More elaborate privacy challenges.

< Off-Chain privacy essential.

< Collaborative zkSNARKSs have the potential for real-world deployment.

Future Work:
< DPSC with Function Hiding,.

% Fine-tune MPC properties (Guaranteed output delivery, ...).
% Special purpose MPC.

Thank you!

24/24

