
Workshop on Cryptographic Tools for Blockchains 2025, Madrid
3 May 2025

Jigsaw: Doubly Private Smart Contracts

1/24

Aarushi Goel

Purdue University

Rohit Sinha

Swirlds Labs

Dimitris Kolonelos

UC Berkeley

Sanjam Garg

UC Berkeley

Outline

Background

Our Contributions

Jigsaw

Conclusions and Open Problems

2/24

Background

3/24

Smart Contract Platforms

Smart Contract

x

Input data Output data

y = f(x)

f

…
𝗍𝗑 = {x, f, y, …}

…

Block i

…

Block i + 1

…

Block i − 1

Blockchain

Decentralized
Computing Machine

Example — DEX

Smart Contract f = DEX 𝗍𝗑

4/24

{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

{ 60 ETH }
{ 0 BTC }

y1,1 =
y1,2 =

{ 2 BTC }
{10 ETH }

y1,2 =
y2,2 =

…
𝗍𝗑 = {x1, x2, DEX, y1, y2…}

…

Block i

5/24

Privacy Leakage

Everything is public on Blockchain!

❖ Computation (functions)

❖ Data (input data, output data)

5/24

Privacy Leakage

Well understood issue, with real-world de-anonymization attacks:

Everything is public on Blockchain!

❖ Computation (functions)

❖ Data (input data, output data)

Academic:

Industry:

6/24

Privacy-Preserving Smart Contracts (PPSC)

MPC
(+zkSNARKs)

FHE
(+zkSNARKs)

TEE

zkSNARKs
Hawk [KMS+16], ZEXE [BCG+20], VERIZEXE [XCZ+23],

zkay [SBG+19], Zapper [SBV22], …

zkHAWK [BCT21], V-zkHAWK [BT22], Eagle [ByCDF23],…

Arbitrum [KGC+18], Ekiden [CZK+19],…

Zeestar [SBBV22], SmartFHE [SWA23],…

6/24

Privacy-Preserving Smart Contracts (PPSC)

MPC
(+zkSNARKs)

FHE
(+zkSNARKs)

TEE

zkSNARKs
Hawk [KMS+16], ZEXE [BCG+20], VERIZEXE [XCZ+23],

zkay [SBG+19], Zapper [SBV22], …

zkHAWK [BCT21], V-zkHAWK [BT22], Eagle [ByCDF23],…

Specific Applications: Zerocash [BSCG+14] (Transactions), P2DEX [BDF21] (DEX),

 Ratel [LSH+24] (MEV Prevention), …

Arbitrum [KGC+18], Ekiden [CZK+19],…

Zeestar [SBBV22], SmartFHE [SWA23],…

6/24

Privacy-Preserving Smart Contracts (PPSC)

MPC
(+zkSNARKs)

FHE
(+zkSNARKs)

TEE

zkSNARKs
Hawk [KMS+16], ZEXE [BCG+20], VERIZEXE [XCZ+23],

zkay [SBG+19], Zapper [SBV22], …

zkHAWK [BCT21], V-zkHAWK [BT22], Eagle [ByCDF23],…

Specific Applications: Zerocash [BSCG+14] (Transactions), P2DEX [BDF21] (DEX),

 Ratel [LSH+24] (MEV Prevention), …

Arbitrum [KGC+18], Ekiden [CZK+19],…

Zeestar [SBBV22], SmartFHE [SWA23],…

This Work

7/24

zkSNARK-based PPSC
Hawk [KMS+16], ZEXE [BCG+20], Zapper [SBV22], …

Smart Contract f = DEX

{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

{ 60 ETH }
{ 0 BTC }

y1,1 =
y1,2 =

{ 2 BTC }
{10 ETH }

y1,2 =
y2,2 =

7/24

zkSNARK-based PPSC
Hawk [KMS+16], ZEXE [BCG+20], Zapper [SBV22], …

π
Smart Contract f = DEX

{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

{ 60 ETH }
{ 0 BTC }

y1,1 =
y1,2 =

{ 2 BTC }
{10 ETH }

y1,2 =
y2,2 =

zkSNARKs

7/24

zkSNARK-based PPSC
Hawk [KMS+16], ZEXE [BCG+20], Zapper [SBV22], …

π

…
𝗍𝗑 = π

…

Block i

Hawk, Zapper: public
ZEXE: private

f
f

Smart Contract f = DEX

{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

{ 60 ETH }
{ 0 BTC }

y1,1 =
y1,2 =

{ 2 BTC }
{10 ETH }

y1,2 =
y2,2 =

On-chain: zkSNARK for π
∃(x, y) : f(x) = y

zkSNARKs

8/24

Off-Chain Privacy Leak

𝖯𝗋𝗈𝗏𝖾(DEX, x1, x2, y1, y2) π

Off-Chain On-Chain

Private
{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

8/24

Off-Chain Privacy Leak

𝖯𝗋𝗈𝗏𝖾(DEX, x1, x2, y1, y2) π

Off-Chain On-Chain

Off-Chain Privacy Leak
❖ A trusted off-chain entity learns the data.

❖ Non-affordable in applications: Trading, Auctions, DeFi,…

Private
{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

Our Contributions

9/24

Our Contributions

★ Doubly Private Smart Contracts (DPSC) Framework

★ Jigsaw: Cryptographic Construction of DPSC

★ Implemention: <3s off-chain, 40-50x faster

★ Applications

10/24

Doubly Private Smart Contracts Framework

Servers
(Privacy Provider Service)

Clients Blockchain

1. Integrity

2. Fire-and-Forget

3. Anonymity

4. Off-Chain Privacy

x1

x2

x3

x4

𝗍𝗑

11/24

Our Cryptographic Approach
Add another layer of privacy: MPC over zkSNARKs

Smart Contract f = DEX

{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

{ 60 ETH }
{ 0 BTC }

y1,1 =
y1,2 =

{ 2 BTC }
{10 ETH }

y1,2 =
y2,2 =zkSNARKs

11/24

Our Cryptographic Approach

MPC

Add another layer of privacy: MPC over zkSNARKs

Smart Contract f = DEX

{2 BTC, BTC ETH, 1:30}x1 = ↔

{70 ETH, ETH BTC, 30:1}x2 = ↔

{ 60 ETH }
{ 0 BTC }

y1,1 =
y1,2 =

{ 2 BTC }
{10 ETH }

y1,2 =
y2,2 =zkSNARKs

Jigsaw

12/24

Jigsaw from a bird’s-eye view
Outsourcing in a privacy-preserving manner a zkSNARK computation

Servers
(Privacy Provider Service)

Clients Blockchain

x1

x2

x3

x4

𝗍𝗑
MPC

Secret-Shared
data

zkSNARK
transaction

12/24

Jigsaw from a bird’s-eye view
Outsourcing in a privacy-preserving manner a zkSNARK computation

Servers
(Privacy Provider Service)

Clients Blockchain

x1

x2

x3

x4

𝗍𝗑
MPC

Secret-Shared
data

zkSNARK
transaction

Zcash/ZEXE
architecture

Privacy Servers in
place of trusted off-chain

entity

13/24

Jigsaw Architecture

❖ Record: r = (𝖼𝗆, 𝖺𝗉𝗄, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽, 𝗌𝗇, …)

❖ Transaction: 𝗍𝗑 = (𝗌𝗇spent, 𝖼𝗆new, π, f)

 𝖼𝗆 = 𝖢𝗈𝗆(𝖺𝗉𝗄, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽, …)
𝗌𝗇 = 𝖯𝖱𝖥𝗌𝗄(r)

❖ Blockchain state: 𝗋𝗈𝗈𝗍 = 𝖬𝖾𝗋𝗄𝗅𝖾𝖢𝗈𝗆(𝖼𝗆1, 𝖼𝗆2, …, 𝖼𝗆n)

Zcash/ZEXE data structures [BSCGGMTV14]

 zkSNARK for: (1) valid (,…)

 (2) well formed

 (3)

π 𝗌𝗇spent 𝖼𝗆spent ∈ 𝗋𝗈𝗈𝗍

𝖼𝗆new

f(𝗉𝖺𝗒𝗅𝗈𝖺𝖽old, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽new) = 1

13/24

Jigsaw Architecture

❖ Record: r = (𝖼𝗆, 𝖺𝗉𝗄, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽, 𝗌𝗇, …)

❖ Transaction: 𝗍𝗑 = (𝗌𝗇spent, 𝖼𝗆new, π, f)

 𝖼𝗆 = 𝖢𝗈𝗆(𝖺𝗉𝗄, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽, …)
𝗌𝗇 = 𝖯𝖱𝖥𝗌𝗄(r)

❖ Blockchain state: 𝗋𝗈𝗈𝗍 = 𝖬𝖾𝗋𝗄𝗅𝖾𝖢𝗈𝗆(𝖼𝗆1, 𝖼𝗆2, …, 𝖼𝗆n)

Zcash/ZEXE data structures [BSCGGMTV14]

 zkSNARK for: (1) valid (,…)

 (2) well formed

 (3)

π 𝗌𝗇spent 𝖼𝗆spent ∈ 𝗋𝗈𝗈𝗍

𝖼𝗆new

f(𝗉𝖺𝗒𝗅𝗈𝖺𝖽old, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽new) = 1

*ZEXE also hides f

Example — DEX

BTC ETH
1:30

r1 = (…(2,BTC)…)
↔

ETH BTC
30:1

r2 = (…(70,ETH)…)
↔

r̃1,1 = (…(60,ETH)…)

r̃1,2 = (…(0,BTC)…)

r̃2,1 = (…(2,BTC)…)

r̃2,2 = (…(10,ETH)…)

𝗍𝗑 = (𝗌𝗇1, 𝗌𝗇2, 𝖼̃𝗆 1,1, 𝖼̃𝗆 1,2, 𝖼̃𝗆 2,1, 𝖼̃𝗆 2,2, π, DEX)

Smart Contract f = DEX

𝗍𝗑

14/24

15/24

Challenges

1. Interaction: Output records computed by the Servers Clients
have to come back for their secret keys.

2. Efficiency: How does an MPC compute a zkSNARK?

→

15/24

Challenges

1. Interaction: Output records computed by the Servers Clients
have to come back for their secret keys.

2. Efficiency: How does an MPC compute a zkSNARK?

→

Homomorphic commitments: Clients pre-generate dummy records with their
secret keys — Servers ‘correct’ them homomorphically and post them on-chain

15/24

Challenges

1. Interaction: Output records computed by the Servers Clients
have to come back for their secret keys.

2. Efficiency: How does an MPC compute a zkSNARK?

→

Collaborative zkSNARKs

Homomorphic commitments: Clients pre-generate dummy records with their
secret keys — Servers ‘correct’ them homomorphically and post them on-chain

16/24

Collaborative zkSNARKs [OB22]

Collaborative zkNARKs: Efficient MPC for a zkSNARK Prover

Server 1
Witness w2

Server 2

Server 3 proof for π R(x; w)

Witness w1 Witness w3

16/24

Collaborative zkSNARKs [OB22]

Collaborative zkNARKs: Efficient MPC for a zkSNARK Prover

Server 1
Witness w2

Server 2

Server 3 proof for π R(x; w)

Witness w1 Witness w3

No server knows the full witness
❖ Part of the witness:
❖ Share of the witness:

w → (w1∥w2∥w3)
w → ([w]1, [w]2, [w]3)

17/24

Collaborative zkSNARKs — Efficiency Limitations

1. Each Server’s computation is proportional to not

2. Communication overhead: Multiplication depth is of essence

i ∥w∥ ∥wi∥

Traditional
zkSNARKs

Collaborative
zkSNARKs

Round 2

Round 1O(#gates) computation O(#gates) computation
+

O(mult. depth) communication

17/24

Collaborative zkSNARKs — Efficiency Limitations

1. Each Server’s computation is proportional to not

2. Communication overhead: Multiplication depth is of essence

i ∥w∥ ∥wi∥

Traditional
zkSNARKs

Collaborative
zkSNARKs

Round 2

Round 1

E.g. Poseidon Hash is not suitable for Collaborative SNARKs

O(#gates) computation O(#gates) computation
+

O(mult. depth) communication

17/24

Collaborative zkSNARKs — Efficiency Limitations

1. Each Server’s computation is proportional to not

2. Communication overhead: Multiplication depth is of essence

i ∥w∥ ∥wi∥

Traditional
zkSNARKs

Collaborative
zkSNARKs

Round 2

Round 1

E.g. Poseidon Hash is not suitable for Collaborative SNARKs

O(#gates) computation O(#gates) computation
+

O(mult. depth) communication
>2min for

Merkle Tree
opening

18/24

Jigsaw Core Technique (1) zkSNARK for: (1) valid (,…)

 (2) well formed

 (3)

π 𝗌𝗇spent 𝖼𝗆spent ∈ 𝗋𝗈𝗈𝗍

𝖼𝗆new

f(𝗉𝖺𝗒𝗅𝗈𝖺𝖽old, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽new) = 1

Core Observation: The bulk of the work includes only local data

18/24

Jigsaw Core Technique (1) zkSNARK for: (1) valid (,…)

 (2) well formed

 (3)

π 𝗌𝗇spent 𝖼𝗆spent ∈ 𝗋𝗈𝗈𝗍

𝖼𝗆new

f(𝗉𝖺𝗒𝗅𝗈𝖺𝖽old, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽new) = 1

Core Observation: The bulk of the work includes only local data

Main idea:
‣ Each client computes a local zkSNARK for their data
‣ Servers compute a collaborative zkSNARK for what’s left

π1 π2

π3
πMPC

18/24

Jigsaw Core Technique (1) zkSNARK for: (1) valid (,…)

 (2) well formed

 (3)

π 𝗌𝗇spent 𝖼𝗆spent ∈ 𝗋𝗈𝗈𝗍

𝖼𝗆new

f(𝗉𝖺𝗒𝗅𝗈𝖺𝖽old, 𝗉𝖺𝗒𝗅𝗈𝖺𝖽new) = 1

Core Observation: The bulk of the work includes only local data

Main idea:
‣ Each client computes a local zkSNARK for their data
‣ Servers compute a collaborative zkSNARK for what’s left

Local for (1)+(2), π1

[w1]

Local for (1)+(2), π2

[w2]
Collaborative

 for (3)πMPC

(π1, π2, πMPC)

π1 π2

π3
πMPC

19/24

Jigsaw Core Technique (2)

Careful Decomposition of the relation:

Client i Servers
Local zkSNARK for:
‣ Merkle tree inclusions

‣ Commitments opening

‣ PRF computations

πi Collaborative zkSNARK for:
‣ Execution of

‣ A few field operations

πi
f

π1 π2

π3
πMPC

19/24

Jigsaw Core Technique (2)

Careful Decomposition of the relation:

Client i Servers
Local zkSNARK for:
‣ Merkle tree inclusions

‣ Commitments opening

‣ PRF computations

πi Collaborative zkSNARK for:
‣ Execution of

‣ A few field operations

πi
f

Extremely simple for
many applications
(e.g. DEX, auction)

π1 π2

π3
πMPC

20/24

More Technical Subtleties

‣ Commit-and-prove zkSNARKs to ensure , are over the same data.
➡ Commit-and-prove PLONK variant.

‣ Signatures of Knowledge to bind with the intended .

‣ Proofs of correct secret-sharing to prevent malicious clients.

πi πMPC

πi f

21/24

Applications

Atomic Swaps/Trading Sealed-bid Auctions

Lotteries Voting

22/24

Implementation (1)

Local zkSNARK:
❖ (i) TurboPLONK [GW20] + (ii) Custom SNARK for CP-link + (iii) Custom
SNARK of Correct Secret Sharing
❖ Macbook Pro with 8-core M2 CPU and 16 GB RAM
❖ Multicore implementation

Proving Time (sec): ~ 1.3 — 3.6

23/24

Implementation (2)
Collaborative zkSNARK:
❖ Taceo toolchain implementation
❖ 3 AWS c4.xlarge machines, with 4 vCPUs and 8 GB RAM each

40-50x faster than
generic Collaborative

zkSNARKs

23/24

Implementation (2)

Verification:

Collaborative zkSNARK:
❖ Taceo toolchain implementation
❖ 3 AWS c4.xlarge machines, with 4 vCPUs and 8 GB RAM each

Gas Cost (K): ~432 + 472*#clients

40-50x faster than
generic Collaborative

zkSNARKs

Conclusions

24/24

Thank you!

Conclusions:
❖ More elaborate applications —> More elaborate privacy challenges.
❖ Off-Chain privacy essential.
❖ Collaborative zkSNARKs have the potential for real-world deployment.

Future Work:
❖ DPSC with Function Hiding.
❖ Fine-tune MPC properties (Guaranteed output delivery, …).
❖ Special purpose MPC.

Conclusions and Future Work

